Articoli correlati a Applied Machine Learning Explainability Techniques:...

Applied Machine Learning Explainability Techniques: Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more - Brossura

 
9781803246154: Applied Machine Learning Explainability Techniques: Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more

Sinossi

Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systems

Key Features

  • Explore various explainability methods for designing robust and scalable explainable ML systems
  • Use XAI frameworks such as LIME and SHAP to make ML models explainable to solve practical problems
  • Design user-centric explainable ML systems using guidelines provided for industrial applications

Book Description

Explainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users. XAI makes machine learning (ML) models transparent and trustworthy along with promoting AI adoption for industrial and research use cases.

Applied Machine Learning Explainability Techniques comes with a unique blend of industrial and academic research perspectives to help you acquire practical XAI skills. You'll begin by gaining a conceptual understanding of XAI and why it's so important in AI. Next, you'll get the practical experience needed to utilize XAI in AI/ML problem-solving processes using state-of-the-art methods and frameworks. Finally, you'll get the essential guidelines needed to take your XAI journey to the next level and bridge the existing gaps between AI and end users.

By the end of this ML book, you'll be equipped with best practices in the AI/ML life cycle and will be able to implement XAI methods and approaches using Python to solve industrial problems, successfully addressing key pain points encountered.

What you will learn

  • Explore various explanation methods and their evaluation criteria
  • Learn model explanation methods for structured and unstructured data
  • Apply data-centric XAI for practical problem-solving
  • Hands-on exposure to LIME, SHAP, TCAV, DALEX, ALIBI, DiCE, and others
  • Discover industrial best practices for explainable ML systems
  • Use user-centric XAI to bring AI closer to non-technical end users
  • Address open challenges in XAI using the recommended guidelines

Who this book is for

This book is for scientists, researchers, engineers, architects, and managers who are actively engaged in machine learning and related fields. Anyone who is interested in problem-solving using AI will benefit from this book. Foundational knowledge of Python, ML, DL, and data science is recommended. AI/ML experts working with data science, ML, DL, and AI will be able to put their knowledge to work with this practical guide. This book is ideal for you if you're a data and AI scientist, AI/ML engineer, AI/ML product manager, AI product owner, AI/ML researcher, and UX and HCI researcher.

Table of Contents

  1. Foundational Concepts of Explainability Techniques
  2. Model Explainability Methods
  3. Data-Centric Approaches
  4. LIME for Model Interpretability
  5. Practical Exposure to Using LIME in ML
  6. Model Interpretability Using SHAP
  7. Practical Exposure to Using SHAP in ML
  8. Human-Friendly Explanations with TCAV
  9. Other Popular XAI Frameworks
  10. XAI Industry Best Practices
  11. End User-Centered Artificial Intelligence

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Aditya Bhattacharya is an Explainable AI Researcher at KU Leuven with the mission to bring AI closer to end-users.

Previously, I had worked as the AI Lead and a data scientist at West Pharmaceuticals. I have an overall exposure of 6 years in Data Science, Machine Learning, IoT, and Software Development. I have led more than 20 AI projects and programs democratizing AI practice for West and Microsoft. In West, I have contributed to forming the AI team and developed end-to-end solutions from scratch. I also have people management experience of about 2 years at West and have led and managed a global team of 10+ members.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,21 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 5,82 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Risultati della ricerca per Applied Machine Learning Explainability Techniques:...

Foto dell'editore

Aditya Bhattacharya
Editore: Packt Publishing Limited, 2022
ISBN 10: 1803246154 ISBN 13: 9781803246154
Nuovo PAP
Print on Demand

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781803246154

Contatta il venditore

Compra nuovo

EUR 47,56
Convertire valuta
Spese di spedizione: EUR 5,82
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Bhattacharya, Aditya
Editore: Packt Publishing, 2022
ISBN 10: 1803246154 ISBN 13: 9781803246154
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781803246154

Contatta il venditore

Compra nuovo

EUR 46,12
Convertire valuta
Spese di spedizione: EUR 7,75
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Aditya Bhattacharya
Editore: Packt Publishing Limited, 2022
ISBN 10: 1803246154 ISBN 13: 9781803246154
Nuovo PAP
Print on Demand

Da: PBShop.store US, Wood Dale, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781803246154

Contatta il venditore

Compra nuovo

EUR 52,23
Convertire valuta
Spese di spedizione: EUR 1,93
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Bhattacharya, Aditya
Editore: Packt Publishing, 2022
ISBN 10: 1803246154 ISBN 13: 9781803246154
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781803246154_new

Contatta il venditore

Compra nuovo

EUR 46,86
Convertire valuta
Spese di spedizione: EUR 10,39
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Bhattacharya, Aditya
ISBN 10: 1803246154 ISBN 13: 9781803246154
Nuovo Paperback or Softback

Da: BargainBookStores, Grand Rapids, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback or Softback. Condizione: New. Applied Machine Learning Explainability Techniques: Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more 1.16. Book. Codice articolo BBS-9781803246154

Contatta il venditore

Compra nuovo

EUR 45,71
Convertire valuta
Spese di spedizione: EUR 11,62
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Aditya Bhattacharya
ISBN 10: 1803246154 ISBN 13: 9781803246154
Nuovo Paperback

Da: Rarewaves.com UK, London, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systemsKey FeaturesExplore various explainability methods for designing robust and scalable explainable ML systemsUse XAI frameworks such as LIME and SHAP to make ML models explainable to solve practical problemsDesign user-centric explainable ML systems using guidelines provided for industrial applicationsBook DescriptionExplainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users. XAI makes machine learning (ML) models transparent and trustworthy along with promoting AI adoption for industrial and research use cases.Applied Machine Learning Explainability Techniques comes with a unique blend of industrial and academic research perspectives to help you acquire practical XAI skills. You'll begin by gaining a conceptual understanding of XAI and why it's so important in AI. Next, you'll get the practical experience needed to utilize XAI in AI/ML problem-solving processes using state-of-the-art methods and frameworks. Finally, you'll get the essential guidelines needed to take your XAI journey to the next level and bridge the existing gaps between AI and end users.By the end of this ML book, you'll be equipped with best practices in the AI/ML life cycle and will be able to implement XAI methods and approaches using Python to solve industrial problems, successfully addressing key pain points encountered.What you will learnExplore various explanation methods and their evaluation criteriaLearn model explanation methods for structured and unstructured dataApply data-centric XAI for practical problem-solvingHands-on exposure to LIME, SHAP, TCAV, DALEX, ALIBI, DiCE, and othersDiscover industrial best practices for explainable ML systemsUse user-centric XAI to bring AI closer to non-technical end usersAddress open challenges in XAI using the recommended guidelinesWho this book is forThis book is for scientists, researchers, engineers, architects, and managers who are actively engaged in machine learning and related fields. Anyone who is interested in problem-solving using AI will benefit from this book. Foundational knowledge of Python, ML, DL, and data science is recommended. AI/ML experts working with data science, ML, DL, and AI will be able to put their knowledge to work with this practical guide. This book is ideal for you if you're a data and AI scientist, AI/ML engineer, AI/ML product manager, AI product owner, AI/ML researcher, and UX and HCI researcher. Codice articolo LU-9781803246154

Contatta il venditore

Compra nuovo

EUR 55,14
Convertire valuta
Spese di spedizione: EUR 2,31
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Aditya Bhattacharya
Editore: Packt Publishing Limited, 2022
ISBN 10: 1803246154 ISBN 13: 9781803246154
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. Codice articolo C9781803246154

Contatta il venditore

Compra nuovo

EUR 52,55
Convertire valuta
Spese di spedizione: EUR 6,11
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Bhattacharya, Aditya
Editore: Packt Publishing, 2022
ISBN 10: 1803246154 ISBN 13: 9781803246154
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44586327-n

Contatta il venditore

Compra nuovo

EUR 41,87
Convertire valuta
Spese di spedizione: EUR 17,21
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Bhattacharya, Aditya
Editore: Packt Publishing, 2022
ISBN 10: 1803246154 ISBN 13: 9781803246154
Nuovo Brossura

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 737973909

Contatta il venditore

Compra nuovo

EUR 52,76
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Aditya Bhattacharya
ISBN 10: 1803246154 ISBN 13: 9781803246154
Nuovo Paperback

Da: Rarewaves.com USA, London, LONDO, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systemsKey FeaturesExplore various explainability methods for designing robust and scalable explainable ML systemsUse XAI frameworks such as LIME and SHAP to make ML models explainable to solve practical problemsDesign user-centric explainable ML systems using guidelines provided for industrial applicationsBook DescriptionExplainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users. XAI makes machine learning (ML) models transparent and trustworthy along with promoting AI adoption for industrial and research use cases.Applied Machine Learning Explainability Techniques comes with a unique blend of industrial and academic research perspectives to help you acquire practical XAI skills. You'll begin by gaining a conceptual understanding of XAI and why it's so important in AI. Next, you'll get the practical experience needed to utilize XAI in AI/ML problem-solving processes using state-of-the-art methods and frameworks. Finally, you'll get the essential guidelines needed to take your XAI journey to the next level and bridge the existing gaps between AI and end users.By the end of this ML book, you'll be equipped with best practices in the AI/ML life cycle and will be able to implement XAI methods and approaches using Python to solve industrial problems, successfully addressing key pain points encountered.What you will learnExplore various explanation methods and their evaluation criteriaLearn model explanation methods for structured and unstructured dataApply data-centric XAI for practical problem-solvingHands-on exposure to LIME, SHAP, TCAV, DALEX, ALIBI, DiCE, and othersDiscover industrial best practices for explainable ML systemsUse user-centric XAI to bring AI closer to non-technical end usersAddress open challenges in XAI using the recommended guidelinesWho this book is forThis book is for scientists, researchers, engineers, architects, and managers who are actively engaged in machine learning and related fields. Anyone who is interested in problem-solving using AI will benefit from this book. Foundational knowledge of Python, ML, DL, and data science is recommended. AI/ML experts working with data science, ML, DL, and AI will be able to put their knowledge to work with this practical guide. This book is ideal for you if you're a data and AI scientist, AI/ML engineer, AI/ML product manager, AI product owner, AI/ML researcher, and UX and HCI researcher. Codice articolo LU-9781803246154

Contatta il venditore

Compra nuovo

EUR 60,23
Convertire valuta
Spese di spedizione: EUR 2,31
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 9 copie di questo libro

Vedi tutti i risultati per questo libro