Articoli correlati a Machine Learning Engineering on AWS: Build, scale,...

Machine Learning Engineering on AWS: Build, scale, and secure machine learning systems and MLOps pipelines in production - Brossura

 
9781803247595: Machine Learning Engineering on AWS: Build, scale, and secure machine learning systems and MLOps pipelines in production

Sinossi

Work seamlessly with production-ready machine learning systems and pipelines on AWS by addressing key pain points encountered in the ML life cycle

Key Features

  • Gain practical knowledge of managing ML workloads on AWS using Amazon SageMaker, Amazon EKS, and more
  • Use container and serverless services to solve a variety of ML engineering requirements
  • Design, build, and secure automated MLOps pipelines and workflows on AWS

Book Description

There is a growing need for professionals with experience in working on machine learning (ML) engineering requirements as well as those with knowledge of automating complex MLOps pipelines in the cloud. This book explores a variety of AWS services, such as Amazon Elastic Kubernetes Service, AWS Glue, AWS Lambda, Amazon Redshift, and AWS Lake Formation, which ML practitioners can leverage to meet various data engineering and ML engineering requirements in production.

This machine learning book covers the essential concepts as well as step-by-step instructions that are designed to help you get a solid understanding of how to manage and secure ML workloads in the cloud. As you progress through the chapters, you'll discover how to use several container and serverless solutions when training and deploying TensorFlow and PyTorch deep learning models on AWS. You'll also delve into proven cost optimization techniques as well as data privacy and model privacy preservation strategies in detail as you explore best practices when using each AWS.

By the end of this AWS book, you'll be able to build, scale, and secure your own ML systems and pipelines, which will give you the experience and confidence needed to architect custom solutions using a variety of AWS services for ML engineering requirements.

What you will learn

  • Find out how to train and deploy TensorFlow and PyTorch models on AWS
  • Use containers and serverless services for ML engineering requirements
  • Discover how to set up a serverless data warehouse and data lake on AWS
  • Build automated end-to-end MLOps pipelines using a variety of services
  • Use AWS Glue DataBrew and SageMaker Data Wrangler for data engineering
  • Explore different solutions for deploying deep learning models on AWS
  • Apply cost optimization techniques to ML environments and systems
  • Preserve data privacy and model privacy using a variety of techniques

Who this book is for

This book is for machine learning engineers, data scientists, and AWS cloud engineers interested in working on production data engineering, machine learning engineering, and MLOps requirements using a variety of AWS services such as Amazon EC2, Amazon Elastic Kubernetes Service (EKS), Amazon SageMaker, AWS Glue, Amazon Redshift, AWS Lake Formation, and AWS Lambda -- all you need is an AWS account to get started. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.

Table of Contents

  1. Introduction to ML Engineering on AWS
  2. Deep Learning AMIs
  3. Deep Learning Containers
  4. Serverless Data Management on AWS
  5. Pragmatic Data Processing and Analysis
  6. SageMaker Training and Debugging Solutions
  7. SageMaker Deployment Solutions
  8. Model Monitoring and Management Solutions
  9. Security, Governance, and Compliance Strategies
  10. Machine Learning Pipelines with Kubeflow on Amazon EKS
  11. Machine Learning Pipelines with SageMaker Pipelines

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Joshua Arvin Lat is the Chief Technology Officer (CTO) of NuWorks Interactive Labs, Inc. He previously served as the CTO of three Australian-owned companies and also served as the Director for Software Development and Engineering for multiple e-commerce start-ups in the past, which allowed him to be more effective as a leader. Years ago, he and his team won first place in a global cybersecurity competition with their published research paper. He is also an AWS Machine Learning Hero and has shared his knowledge at several international conferences, discussing practical strategies on machine learning, engineering, security, and management.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: buono
530 Seiten; 9781803247595.4 Gewicht...
Visualizza questo articolo

EUR 17,90 per la spedizione da Germania a Italia

Destinazione, tempi e costi

EUR 6,39 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Risultati della ricerca per Machine Learning Engineering on AWS: Build, scale,...

Foto dell'editore

Lat Joshua, Arvin:
Editore: Packt Publishing, 2022
ISBN 10: 1803247592 ISBN 13: 9781803247595
Antico o usato paperback

Da: Studibuch, Stuttgart, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: Befriedigend. 530 Seiten; 9781803247595.4 Gewicht in Gramm: 2. Codice articolo 882574

Contatta il venditore

Compra usato

EUR 21,30
Convertire valuta
Spese di spedizione: EUR 17,90
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Joshua Arvin Lat
Editore: Packt Publishing, 2022
ISBN 10: 1803247592 ISBN 13: 9781803247595
Nuovo PAP
Print on Demand

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781803247595

Contatta il venditore

Compra nuovo

EUR 47,61
Convertire valuta
Spese di spedizione: EUR 6,39
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Joshua Arvin Lat
Editore: Packt Publishing, 2022
ISBN 10: 1803247592 ISBN 13: 9781803247595
Nuovo PAP
Print on Demand

Da: PBShop.store US, Wood Dale, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781803247595

Contatta il venditore

Compra nuovo

EUR 54,04
Convertire valuta
Spese di spedizione: EUR 0,55
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Lat, Joshua Arvin
ISBN 10: 1803247592 ISBN 13: 9781803247595
Nuovo Paperback or Softback

Da: BargainBookStores, Grand Rapids, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback or Softback. Condizione: New. Machine Learning Engineering on AWS: Build, scale, and secure machine learning systems and MLOps pipelines in production 1.98. Book. Codice articolo BBS-9781803247595

Contatta il venditore

Compra nuovo

EUR 45,20
Convertire valuta
Spese di spedizione: EUR 11,55
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Lat, Joshua Arvin
Editore: Packt Publishing, 2022
ISBN 10: 1803247592 ISBN 13: 9781803247595
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781803247595_new

Contatta il venditore

Compra nuovo

EUR 46,92
Convertire valuta
Spese di spedizione: EUR 10,40
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Lat, Joshua Arvin
Editore: Packt Publishing 2022-10, 2022
ISBN 10: 1803247592 ISBN 13: 9781803247595
Nuovo PF

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PF. Condizione: New. Codice articolo 6666-IUK-9781803247595

Contatta il venditore

Compra nuovo

EUR 41,83
Convertire valuta
Spese di spedizione: EUR 23,12
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Foto dell'editore

Joshua Arvin Lat
Editore: Packt Publishing Limited, 2022
ISBN 10: 1803247592 ISBN 13: 9781803247595
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. Codice articolo C9781803247595

Contatta il venditore

Compra nuovo

EUR 60,00
Convertire valuta
Spese di spedizione: EUR 6,12
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Lat, Joshua Arvin
Editore: Packt Publishing, 2022
ISBN 10: 1803247592 ISBN 13: 9781803247595
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Codice articolo 748528263

Contatta il venditore

Compra nuovo

EUR 58,34
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Joshua Arvin Lat
Editore: Packt Publishing, 2022
ISBN 10: 1803247592 ISBN 13: 9781803247595
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Work seamlessly with production-ready machine learning systems and pipelines on AWS by addressing key pain points encountered in the ML life cycle Key Features:Gain practical knowledge of managing ML workloads on AWS using Amazon SageMaker, Amazon EKS, and more Use container and serverless services to solve a variety of ML engineering requirements Design, build, and secure automated MLOps pipelines and workflows on AWS Book Description: There is a growing need for professionals with experience in working on machine learning (ML) engineering requirements as well as those with knowledge of automating complex MLOps pipelines in the cloud. This book explores a variety of AWS services, such as Amazon Elastic Kubernetes Service, AWS Glue, AWS Lambda, Amazon Redshift, and AWS Lake Formation, which ML practitioners can leverage to meet various data engineering and ML engineering requirements in production. This machine learning book covers the essential concepts as well as step-by-step instructions that are designed to help you get a solid understanding of how to manage and secure ML workloads in the cloud. As you progress through the chapters, you'll discover how to use several container and serverless solutions when training and deploying TensorFlow and PyTorch deep learning models on AWS. You'll also delve into proven cost optimization techniques as well as data privacy and model privacy preservation strategies in detail as you explore best practices when using each AWS. By the end of this AWS book, you'll be able to build, scale, and secure your own ML systems and pipelines, which will give you the experience and confidence needed to architect custom solutions using a variety of AWS services for ML engineering requirements. What You Will Learn:Find out how to train and deploy TensorFlow and PyTorch models on AWS Use containers and serverless services for ML engineering requirements Discover how to set up a serverless data warehouse and data lake on AWS Build automated end-to-end MLOps pipelines using a variety of services Use AWS Glue DataBrew and SageMaker Data Wrangler for data engineering Explore different solutions for deploying deep learning models on AWS Apply cost optimization techniques to ML environments and systems Preserve data privacy and model privacy using a variety of techniques Who this book is for: This book is for machine learning engineers, data scientists, and AWS cloud engineers interested in working on production data engineering, machine learning engineering, and MLOps requirements using a variety of AWS services such as Amazon EC2, Amazon Elastic Kubernetes Service (EKS), Amazon SageMaker, AWS Glue, Amazon Redshift, AWS Lake Formation, and AWS Lambda -- all you need is an AWS account to get started. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively. Codice articolo 9781803247595

Contatta il venditore

Compra nuovo

EUR 66,79
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Lat, Joshua Arvin
Editore: Packt Publishing, 2022
ISBN 10: 1803247592 ISBN 13: 9781803247595
Nuovo paperback

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: New. New. book. Codice articolo ERICA80018032475926

Contatta il venditore

Compra nuovo

EUR 70,30
Convertire valuta
Spese di spedizione: EUR 28,92
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 1 copie di questo libro

Vedi tutti i risultati per questo libro