Create end-to-end, reproducible feature engineering pipelines that can be deployed into production using open-source Python libraries
Feature engineering, the process of transforming variables and creating features, albeit time-consuming, ensures that your machine learning models perform seamlessly. This second edition of Python Feature Engineering Cookbook will take the struggle out of feature engineering by showing you how to use open source Python libraries to accelerate the process via a plethora of practical, hands-on recipes.
This updated edition begins by addressing fundamental data challenges such as missing data and categorical values, before moving on to strategies for dealing with skewed distributions and outliers. The concluding chapters show you how to develop new features from various types of data, including text, time series, and relational databases. With the help of numerous open source Python libraries, you'll learn how to implement each feature engineering method in a performant, reproducible, and elegant manner.
By the end of this Python book, you will have the tools and expertise needed to confidently build end-to-end and reproducible feature engineering pipelines that can be deployed into production.
This book is for machine learning and data science students and professionals, as well as software engineers working on machine learning model deployment, who want to learn more about how to transform their data and create new features to train machine learning models in a better way.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Soledad Galli is a lead data scientist with more than 10 years of experience in world-class academic institutions and renowned businesses. She has researched, developed, and put into production machine learning models for insurance claims, credit risk assessment, and fraud prevention. Soledad received a Data Science Leaders' award in 2018 and was named one of LinkedIn's voices in data science and analytics in 2019. She is passionate about enabling people to step into and excel in data science, which is why she mentors data scientists and speaks at data science meetings regularly. She also teaches online courses on machine learning in a prestigious Massive Open Online Course platform, which have reached more than 10,000 students worldwide.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 16,97 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 7,64 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781804611302
Quantità: Più di 20 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781804611302
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Python Feature Engineering Cookbook - Second Edition: Over 70 recipes for creating, engineering, and transforming features to build machine learning m 1.46. Book. Codice articolo BBS-9781804611302
Quantità: 5 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781804611302
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 44898789-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781804611302_new
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 386. Codice articolo 402226459
Quantità: 4 disponibili
Da: Rarewaves.com UK, London, Regno Unito
Paperback. Condizione: New. Create end-to-end, reproducible feature engineering pipelines that can be deployed into production using open-source Python librariesKey FeaturesLearn and implement feature engineering best practicesReinforce your learning with the help of multiple hands-on recipesBuild end-to-end feature engineering pipelines that are performant and reproducibleBook DescriptionFeature engineering, the process of transforming variables and creating features, albeit time-consuming, ensures that your machine learning models perform seamlessly. This second edition of Python Feature Engineering Cookbook will take the struggle out of feature engineering by showing you how to use open source Python libraries to accelerate the process via a plethora of practical, hands-on recipes.This updated edition begins by addressing fundamental data challenges such as missing data and categorical values, before moving on to strategies for dealing with skewed distributions and outliers. The concluding chapters show you how to develop new features from various types of data, including text, time series, and relational databases. With the help of numerous open source Python libraries, you'll learn how to implement each feature engineering method in a performant, reproducible, and elegant manner.By the end of this Python book, you will have the tools and expertise needed to confidently build end-to-end and reproducible feature engineering pipelines that can be deployed into production.What you will learnImpute missing data using various univariate and multivariate methodsEncode categorical variables with one-hot, ordinal, and count encodingHandle highly cardinal categorical variablesTransform, discretize, and scale your variablesCreate variables from date and time with pandas and Feature-engineCombine variables into new featuresExtract features from text as well as from transactional data with FeaturetoolsCreate features from time series data with tsfreshWho this book is forThis book is for machine learning and data science students and professionals, as well as software engineers working on machine learning model deployment, who want to learn more about how to transform their data and create new features to train machine learning models in a better way. Codice articolo LU-9781804611302
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 44898789
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. Codice articolo C9781804611302
Quantità: Più di 20 disponibili