<strong style="color: rgba(0, 0, 0, 1)">Elevate your machine learning skills using the Conformal Prediction framework for uncertainty quantification. Dive into unique strategies, overcome real-world challenges, and become confident and precise with forecasting.
Key Features:
Book Description:
<span style="color: rgba(0, 0, 0, 1)">In the rapidly evolving landscape of machine learning, the ability to accurately quantify uncertainty is pivotal. The book addresses this need by offering an in-depth exploration of Conformal Prediction, a cutting-edge framework to manage uncertainty in various ML applications.</span>
<span style="color: rgba(0, 0, 0, 1)">Learn how Conformal Prediction excels in calibrating classification models, produces well-calibrated prediction intervals for regression, and resolves challenges in time series forecasting and imbalanced data. Discover specialised applications of conformal prediction in cutting-edge domains like computer vision and NLP. Each chapter delves into specific aspects, offering hands-on insights and best practices for enhancing prediction reliability. The book concludes with a focus on multi-class classification nuances, providing expert-level proficiency to seamlessly integrate Conformal Prediction into diverse industries. With practical examples in Python using real-world datasets, expert insights, and open-source library applications, you will gain a solid understanding of this modern framework for uncertainty quantification.</span>
<span style="color: rgba(0, 0, 0, 1)">By the end of this book, you will be able to master Conformal Prediction in Python with a blend of theory and practical application, enabling you to confidently apply this powerful framework to quantify uncertainty in diverse fields.</span>
What You Will Learn:
Who this book is for:
Ideal for readers with a basic understanding of machine learning concepts and Python programming, this book caters to data scientists, ML engineers, academics, and anyone keen on advancing their skills in uncertainty quantification in ML.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Valeriy Manokhin is the leading expert in the field of machine learning and Conformal Prediction. He holds a Ph.D.in Machine Learning from Royal Holloway, University of London. His doctoral work was supervised by the creator of Conformal Prediction, Vladimir Vovk, and focused on developing new methods for quantifying uncertainty in machine learning models. Valeriy has published extensively in leading machine learning journals, and his Ph.D. dissertation 'Machine Learning for Probabilistic Prediction' is read by thousands of people across the world. He is also the creator of "Awesome Conformal Prediction," the most popular resource and GitHub repository for all things Conformal Prediction.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,05 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 7,68 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781805122760
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781805122760
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Practical Guide to Applied Conformal Prediction in Python: Learn and apply the best uncertainty frameworks to your industry applications 0.92. Book. Codice articolo BBS-9781805122760
Quantità: 5 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781805122760
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26396352203
Quantità: 4 disponibili
Da: Rarewaves.com UK, London, Regno Unito
Paperback. Condizione: New. Discover the power of Conformal Prediction with the "Practical Guide to Applied Conformal Prediction in Python." Master the latest techniques to quantify uncertainty in machine learning and computer vision models, and seamlessly apply them to your industry applications. Codice articolo LU-9781805122760
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 401106196
Quantità: 4 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 47130100-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781805122760_new
Quantità: Più di 20 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18396352193
Quantità: 4 disponibili