Articoli correlati a Applied Deep Learning on Graphs: Leverage graph data...

Applied Deep Learning on Graphs: Leverage graph data for business applications using specialized deep learning architectures - Brossura

 
9781835885963: Applied Deep Learning on Graphs: Leverage graph data for business applications using specialized deep learning architectures

Sinossi

Gain a deep understanding of applied deep learning on graphs from data, algorithm, and engineering viewpoints to construct enterprise-ready solutions using deep learning on graph data for wide range of domains

Key Features

  • Explore graph data in real-world systems and leverage graph learning for impactful business results
  • Dive into popular and specialized deep neural architectures like graph convolutional and attention networks
  • Learn how to build scalable and productionizable graph learning solutions
  • Purchase of the print or Kindle book includes a free PDF eBook

Book Description

With their combined expertise spanning cutting-edge AI product development at industry giants such as Walmart, Adobe, Samsung, and Arista Networks, Lakshya and Subhajoy provide real-world insights into the transformative world of graph neural networks (GNNs).

This book demystifies GNNs, guiding you from foundational concepts to advanced techniques and real-world applications. You’ll see how graph data structures power today’s interconnected world, why specialized deep learning approaches are essential, and how to address challenges with existing methods. You’ll start by dissecting early graph representation techniques such as DeepWalk and node2vec. From there, the book takes you through popular GNN architectures, covering graph convolutional and attention networks, autoencoder models, LLMs, and technologies such as retrieval augmented generation on graph data. With a strong theoretical grounding, you’ll seamlessly navigate practical implementations, mastering the critical topics of scalability, interpretability, and application domains such as NLP, recommendations, and computer vision.

By the end of this book, you’ll have mastered the underlying ideas and practical coding skills needed to innovate beyond current methods and gained strategic insights into the future of GNN technologies.

What you will learn

  • Discover how to extract business value through a graph-centric approach
  • Develop a basic understanding of learning graph attributes using machine learning
  • Identify the limitations of traditional deep learning with graph data and explore specialized graph-based architectures
  • Understand industry applications of graph deep learning, including recommender systems and NLP
  • Identify and overcome challenges in production such as scalability and interpretability
  • Perform node classification and link prediction using PyTorch Geometric

Who this book is for

For data scientists, machine learning practitioners, researchers delving into graph-based data, and software engineers crafting graph-related applications, this book offers theoretical and practical guidance with real-world examples. A foundational grasp of ML concepts and Python is presumed.

Table of Contents

  1. Introduction to Graph Learning
  2. Graph Learning in the Real World
  3. Graph Representation Learning
  4. Deep Learning Models for Graphs
  5. Graph Deep Learning Challenges
  6. Harnessing Large Language Models for Graph Learning
  7. Graph Deep Learning in Practice
  8. Graph Deep Learning for Natural Language Processing
  9. Building Recommendation Systems Using Graph Deep Learning
  10. Graph Deep Learning for Computer Vision
  11. Emerging Applications
  12. The Future of Graph Learning

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Lakshya Khandelwal holds a bachelor's and master's degree from IIT Kanpur in mathematics and computer science and has 8+ years of experience in building scalable machine learning products for multiple tech giants. He has worked as a lead ML engineer with Samsung, building natural language intelligence for the very first version of Bixby. He has also worked as a data scientist with Adobe, developing search bid optimization solutions as part of the advertising cloud suite for major enterprises across the globe. In addition, he has led natural language and forecasting initiatives at Walmart, building next-generation AI products for millions of customers. Lakshya currently leads AI for AirMDR, building agentic AI for the cybersecurity domain.

Subhajoy Das is a staff data scientist with 7 years of experience under his belt. He graduated from IIT Kharagpur with a bachelor's and master's degree in mathematics and computing. Since then, he has worked in organizations at varying stages of growth: from fast-growing e-commerce start-ups such as Meesho to behemoths such as Adobe. He has driven several pivotal features in every company he has worked in, including building an end-to-end recommendation system for the Meesho app and curating interesting advertising using reinforcement learning-based optimizations in Adobe Advertising. He is currently working at Arista Networks, building AI-driven apps that are responsible for the cybersecurity of several Fortune 500 companies.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 2,25 per la spedizione in U.S.A.

Destinazione, tempi e costi

Risultati della ricerca per Applied Deep Learning on Graphs: Leverage graph data...

Foto dell'editore

Khandelwal, Lakshya; Das, Subhajoy
Editore: Packt Publishing, 2024
ISBN 10: 1835885969 ISBN 13: 9781835885963
Nuovo Brossura

Da: Best Price, Torrance, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. SUPER FAST SHIPPING. Codice articolo 9781835885963

Contatta il venditore

Compra nuovo

EUR 39,10
Convertire valuta
Spese di spedizione: EUR 7,65
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Unknown, Unknown
ISBN 10: 1835885969 ISBN 13: 9781835885963
Nuovo

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 49464531-n

Contatta il venditore

Compra nuovo

EUR 44,66
Convertire valuta
Spese di spedizione: EUR 2,25
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Khandelwal, Lakshya
ISBN 10: 1835885969 ISBN 13: 9781835885963
Nuovo Paperback or Softback

Da: BargainBookStores, Grand Rapids, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback or Softback. Condizione: New. Applied Deep Learning on Graphs: Leverage graph data for business applications using specialized deep learning architectures 0.96. Book. Codice articolo BBS-9781835885963

Contatta il venditore

Compra nuovo

EUR 47,66
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Khandelwal, Lakshya; Das, Subhajoy
Editore: Packt Publishing, 2024
ISBN 10: 1835885969 ISBN 13: 9781835885963
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781835885963

Contatta il venditore

Compra nuovo

EUR 48,28
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Unknown, Unknown
ISBN 10: 1835885969 ISBN 13: 9781835885963
Antico o usato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 49464531

Contatta il venditore

Compra usato

EUR 49,31
Convertire valuta
Spese di spedizione: EUR 2,25
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Khandelwal, Lakshya; Das, Subhajoy
Editore: Packt Publishing, 2024
ISBN 10: 1835885969 ISBN 13: 9781835885963
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781835885963_new

Contatta il venditore

Compra nuovo

EUR 51,89
Convertire valuta
Spese di spedizione: EUR 13,86
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Unknown, Unknown
ISBN 10: 1835885969 ISBN 13: 9781835885963
Nuovo

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 49464531-n

Contatta il venditore

Compra nuovo

EUR 51,88
Convertire valuta
Spese di spedizione: EUR 17,35
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Lakshya Khandelwal
Editore: Packt Publishing Limited, 2024
ISBN 10: 1835885969 ISBN 13: 9781835885963
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. Codice articolo C9781835885963

Contatta il venditore

Compra nuovo

EUR 58,13
Convertire valuta
Spese di spedizione: EUR 13,89
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Unknown, Unknown
ISBN 10: 1835885969 ISBN 13: 9781835885963
Antico o usato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 49464531

Contatta il venditore

Compra usato

EUR 56,44
Convertire valuta
Spese di spedizione: EUR 17,35
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Lakshya Khandelwal
Editore: Packt Publishing, 2024
ISBN 10: 1835885969 ISBN 13: 9781835885963
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Gain a deep understanding of applied deep learning on graphs from data, algorithm, and engineering viewpoints to construct enterprise-ready solutions using deep learning on graph data for wide range of domainsKey Features: Explore graph data in real-world systems and leverage graph learning for impactful business results Dive into popular and specialized deep neural architectures like graph convolutional and attention networks Learn how to build scalable and productionizable graph learning solutions Purchase of the print or Kindle book includes a free PDF Elektronisches BuchBook Description:With their combined expertise spanning cutting-edge AI product development at industry giants such as Walmart, Adobe, Samsung, and Arista Networks, Lakshya and Subhajoy provide real-world insights into the transformative world of graph neural networks (GNNs).This book demystifies GNNs, guiding you from foundational concepts to advanced techniques and real-world applications. You'll see how graph data structures power today's interconnected world, why specialized deep learning approaches are essential, and how to address challenges with existing methods. You'll start by dissecting early graph representation techniques such as DeepWalk and node2vec. From there, the book takes you through popular GNN architectures, covering graph convolutional and attention networks, autoencoder models, LLMs, and technologies such as retrieval augmented generation on graph data. With a strong theoretical grounding, you'll seamlessly navigate practical implementations, mastering the critical topics of scalability, interpretability, and application domains such as NLP, recommendations, and computer vision.By the end of this book, you'll have mastered the underlying ideas and practical coding skills needed to innovate beyond current methods and gained strategic insights into the future of GNN technologies.What You Will Learn: Discover how to extract business value through a graph-centric approach Develop a basic understanding of learning graph attributes using machine learning Identify the limitations of traditional deep learning with graph data and explore specialized graph-based architectures Understand industry applications of graph deep learning, including recommender systems and NLP Identify and overcome challenges in production such as scalability and interpretability Perform node classification and link prediction using PyTorch GeometricWho this book is for:For data scientists, machine learning practitioners, researchers delving into graph-based data, and software engineers crafting graph-related applications, this book offers theoretical and practical guidance with real-world examples. A foundational grasp of ML concepts and Python is presumed.Table of Contents Introduction to Graph Learning Graph Learning in the Real World Graph Representation Learning Deep Learning Models for Graphs Graph Deep Learning Challenges Harnessing Large Language Models for Graph Learning Graph Deep Learning in Practice Graph Deep Learning for Natural Language Processing Building Recommendation Systems Using Graph Deep Learning Graph Deep Learning for Computer Vision Emerging Applications The Future of Graph Learning. Codice articolo 9781835885963

Contatta il venditore

Compra nuovo

EUR 70,84
Convertire valuta
Spese di spedizione: EUR 62,37
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 1 copie di questo libro

Vedi tutti i risultati per questo libro