Create and improve fully automated forecasts for time series data with strong seasonal effects, holidays, and additional regressors using Python
Purchase of the print or Kindle book includes a free PDF eBook
Key Features:
Book Description:
Forecasting Time Series Data with Prophet will help you to implement Prophet's cutting-edge forecasting techniques to model future data with high accuracy using only a few lines of code. This second edition has been fully revised with every update to the Prophet package since the first edition was published two years ago. An entirely new chapter is also included, diving into the mathematical equations behind Prophet's models. Additionally, the book contains new sections on forecasting during shocks such as COVID, creating custom trend modes from scratch, and a discussion of recent developments in the open-source forecasting community.
You'll cover advanced features such as visualizing forecasts, adding holidays and trend changepoints, and handling outliers. You'll use the Fourier series to model seasonality, learn how to choose between an additive and multiplicative model, and understand when to modify each model parameter. Later, you'll see how to optimize more complicated models with hyperparameter tuning and by adding additional regressors to the model. Finally, you'll learn how to run diagnostics to evaluate the performance of your models in production.
By the end of this book, you'll be able to take a raw time series dataset and build advanced and accurate forecasting models with concise, understandable, and repeatable code.
What You Will Learn:
Who this book is for:
This book is for business managers, data scientists, data analysts, machine learning engineers, and software engineers who want to build time-series forecasts in Python or R. To get the most out of this book, you should have a basic understanding of time series data and be able to differentiate it from other types of data. Basic knowledge of forecasting techniques is a plus.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Greg Rafferty is a data scientist at Google in San Francisco, California. With over a decade of experience, he has worked with many of the top firms in tech, including Facebook (Meta) and IBM. Greg has been an instructor in business analytics on Coursera and has led face-to-face workshops with industry professionals in data science and analytics. With both an MBA and a degree in engineering, he is able to work across the spectrum of data science and communicate with both technical experts and non-technical consumers of data alike.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 92,38 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 7,70 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781837630417
Quantità: Più di 20 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781837630417
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781837630417
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Forecasting Time Series Data with Prophet - Second Edition: Build, improve, and optimize time series forecasting models using Meta's advanced forecast 1.08. Book. Codice articolo BBS-9781837630417
Quantità: 5 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781837630417_new
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. Codice articolo C9781837630417
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26396383972
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 400025915
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18396383982
Quantità: 4 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Create and improve fully automated forecasts for time series data with strong seasonal effects, holidays, and additional regressors using PythonPurchase of the print or Kindle book includes a free PDF Elektronisches BuchKey Features:Explore Prophet, the open source forecasting tool developed at Meta, to improve your forecastsCreate a forecast and run diagnostics to understand forecast qualityFine-tune models to achieve high performance and report this performance with concrete statisticsBook Description:Forecasting Time Series Data with Prophet will help you to implement Prophet's cutting-edge forecasting techniques to model future data with high accuracy using only a few lines of code. This second edition has been fully revised with every update to the Prophet package since the first edition was published two years ago. An entirely new chapter is also included, diving into the mathematical equations behind Prophet's models. Additionally, the book contains new sections on forecasting during shocks such as COVID, creating custom trend modes from scratch, and a discussion of recent developments in the open-source forecasting community.You'll cover advanced features such as visualizing forecasts, adding holidays and trend changepoints, and handling outliers. You'll use the Fourier series to model seasonality, learn how to choose between an additive and multiplicative model, and understand when to modify each model parameter. Later, you'll see how to optimize more complicated models with hyperparameter tuning and by adding additional regressors to the model. Finally, you'll learn how to run diagnostics to evaluate the performance of your models in production.By the end of this book, you'll be able to take a raw time series dataset and build advanced and accurate forecasting models with concise, understandable, and repeatable code.What You Will Learn:Understand the mathematics behind Prophet's modelsBuild practical forecasting models from real datasets using PythonUnderstand the different modes of growth that time series often exhibitDiscover how to identify and deal with outliers in time series dataFind out how to control uncertainty intervals to provide percent confidence in your forecastsProductionalize your Prophet models to scale your work faster and more efficientlyWho this book is for:This book is for business managers, data scientists, data analysts, machine learning engineers, and software engineers who want to build time-series forecasts in Python or R. To get the most out of this book, you should have a basic understanding of time series data and be able to differentiate it from other types of data. Basic knowledge of forecasting techniques is a plus. Codice articolo 9781837630417
Quantità: 1 disponibili