Spectral analysis requires subjective decisions which influence the final estimate and mean that different analysts can obtain different results from the same stationary stochastic observations. Statistical signal processing can overcome this difficulty, producing a unique solution for any set of observations but that is only acceptable if it is close to the best attainable accuracy for most types of stationary data. This book describes a method which fulfils the above near-optimal-solution criterion, taking advantage of greater computing power and robust algorithms to produce enough candidate models to be sure of providing a suitable candidate for given data.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Piet M.T. Broersen received the Ph.D. degree in 1976, from the Delft University of Technology in the Netherlands.
He is currently with the Department of Multi-scale Physics at TU Delft. His main research interest is in automatic identification on statistical grounds. He has developed a practical solution for the spectral and autocorrelation analysis of stochastic data by the automatic selection of a suitable order and type for a time series model of the data.
Automatic Autocorrelation and Spectral Analysis gives random data a language to communicate the information they contain objectively.
In the current practice of spectral analysis, subjective decisions have to be made all of which influence the final spectral estimate and mean that different analysts obtain different results from the same stationary stochastic observations. Statistical signal processing can overcome this difficulty, producing a unique solution for any set of observations but that solution is only acceptable if it is close to the best attainable accuracy for most types of stationary data.
Automatic Autocorrelation and Spectral Analysis describes a method which fulfils the above near-optimal-solution criterion. It takes advantage of greater computing power and robust algorithms to produce enough candidate models to be sure of providing a suitable candidate for given data. Improved order selection quality guarantees that one of the best (and often the best) will be selected automatically. The data themselves suggest their best representation. Should the analyst wish to intervene, alternatives can be provided. Written for graduate signal processing students and for researchers and engineers using time series analysis for practical applications ranging from breakdown prevention in heavy machinery to measuring lung noise for medical diagnosis, this text offers:
tuition in how power spectral density and the autocorrelation function of stochastic data can be estimated and interpreted in time series models;
extensive support for the MATLAB® ARMAsel toolbox;
applications showing the methods in action;
appropriate mathematics for students to apply the methods with references for those who wish to develop them further.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,37 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiGRATIS per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-82940
Quantità: 1 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-242208
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 4154537-n
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Shows the reader which spectral methods (algorithms) are useful in practiceDemonstrates the clear advantages of using parametric rather than non-parametric models for spectral analysisProvides the reader with detailed assistance in using th. Codice articolo 4282937
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 4154537
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 4154537
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 1st edition. 298 pages. 10.00x6.75x0.75 inches. In Stock. Codice articolo x-1846283280
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Neuware - Automatic Autocorrelation and Spectral Analysis gives random data a language to communicate the information they contain objectively. It takes advantage of greater computing power and robust algorithms to produce enough candidate models of a given group of data to be sure of providing a suitable one. Improved order selection guarantees that one of the best (often the best) will be selected automatically. Written for graduate signal processing students and for researchers and engineers using time series analysis for applications ranging from breakdown prevention in heavy machinery to measuring lung noise for medical diagnosis, this text offers: tuition in how power spectral density and the autocorrelation function of stochastic data can be estimated and interpreted in time series models; extensive support for the MATLAB ARMAsel toolbox; applications showing the methods in action; appropriate mathematics for students to apply the methods with references for those who wish to develop them further. Codice articolo 9781846283284
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 4154537-n
Quantità: Più di 20 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2912160241964
Quantità: Più di 20 disponibili