Geometric Properties of Banach Spaces and Nonlinear Iterations: 1965 - Brossura

Chidume, Charles

 
9781848821897: Geometric Properties of Banach Spaces and Nonlinear Iterations: 1965

Sinossi

The contents of this monograph fall within the general area of nonlinear functional analysis and applications. We focus on an important topic within this area: geometric properties of Banach spaces and nonlinear iterations, a topic of intensive research e?orts, especially within the past 30 years, or so. In this theory, some geometric properties of Banach spaces play a crucial role. In the ?rst part of the monograph, we expose these geometric properties most of which are well known. As is well known, among all in?nite dim- sional Banach spaces, Hilbert spaces have the nicest geometric properties. The availability of the inner product, the fact that the proximity map or nearest point map of a real Hilbert space H onto a closed convex subset K of H is Lipschitzian with constant 1, and the following two identities 2 2 2 ||x+y|| =||x|| +2 x,y +||y|| , (?) 2 2 2 2 ||?x+(1??)y|| = ?||x|| +(1??)||y|| ??(1??)||x?y|| , (??) which hold for all x,y? H, are some of the geometric properties that char- terize inner product spaces and also make certain problems posed in Hilbert spaces more manageable than those in general Banach spaces. However, as has been rightly observed by M. Hazewinkel, “... many, and probably most, mathematical objects and models do not naturally live in Hilbert spaces”. Consequently,toextendsomeoftheHilbertspacetechniquestomoregeneral Banach spaces, analogues of the identities (?) and (??) have to be developed.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Dalla quarta di copertina

Nonlinear functional analysis and applications is an area of study that has provided fascination for many mathematicians across the world. This monograph delves specifically into the topic of the geometric properties of Banach spaces and nonlinear iterations, a subject of extensive research over the past thirty years.

Chapters 1 to 5 develop materials on convexity and smoothness of Banach spaces, associated moduli and connections with duality maps. Key results obtained are summarized at the end of each chapter for easy reference. Chapters 6 to 23 deal with an in-depth, comprehensive and up-to-date coverage of the main ideas, concepts and results on iterative algorithms for the approximation of fixed points of nonlinear nonexpansive and pseudo-contractive-type mappings. This includes detailed workings on solutions of variational inequality problems, solutions of Hammerstein integral equations, and common fixed points (and common zeros) of families of nonlinear mappings.

Carefully referenced and full of recent, incisive findings and interesting open-questions, this volume will prove useful for graduate students of mathematical analysis and will be a key-read for mathematicians with an interest in applications of geometric properties of Banach spaces, as well as specialists in nonlinear operator theory.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9781848821934: Geometric Properties of Banach Spaces and Nonlinear Iterations

Edizione in evidenza

ISBN 10:  184882193X ISBN 13:  9781848821934
Casa editrice: Springer, 2009
Brossura