 
    Design of Observer-based Compensators facilitates and adds transparency to design in the frequency domain which is not as well-established among control engineers as time domain design. The presentation of the design procedures starts with a review of the time domain results; therefore, the book also provides quick access to state space methods for control system design.
Frequency domain design of observer-based compensators of all orders is covered. The design of decoupling and disturbance rejecting controllers is presented, and solutions are given to the linear quadratic and the model matching problems. The pole assignment design is facilitated by a new parametric approach in the frequency domain. Anti-windup control is also investigated in the framework of the polynomial approach. The discrete-time results for disturbance rejection and linear quadratic control are also presented.
The book contains worked examples that can easily be reproduced by the reader, and the results are illustrated by simulations.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Peter Hippe was born in Berlin in 1941. He received the Dipl.-Ing. degree in mechanical engineering from Universität Stuttgart, Stuttgart in 1969 and the Dr.-Ing. degree from Friedrich-Alexander Universität, Erlangen in 1976. Since then he has been teaching in the Electrical Engineering Department. His main research interests are in the time and frequency domain design of compensators and the problems caused by constrained actuators. He has coauthored the book Zustandsregelung (Springer, 1985) and he is the author of the book Windup in Control (Springer, 2006)
Joachim Deutscher was born in Schweinfurt, Germany in 1970. He received the Dipl.-Ing. (FH) degree in Electrical Engineering from Fachhochschule Würzburg- Schweinfurt-Aschaffenburg in 1996, the Dipl.-Ing. Univ. degree in Electrical Engineering and the Dr.-Ing. degree from Universität Erlangen-Nürnberg in 1999 and 2003, respectively. He is head of the nonlinear control systems group at the Lehrstuhl für Regelungstechnik, Universität Erlangen-Nürnberg. His main research interests are in nonlinear control and in the application of polynomial matrix methods in control.
Design of Observer-based Compensators presents the frequency domain design of observer-based controllers in complete correspondence to well-known time domain results and gives connecting relations at every design stage. This facilitates and adds transparency to the design in the frequency domain which is not as well-established among control engineers as time-domain design. The presentation of the design procedures starts with a short review of the time domain results; therefore, the book also provides quick access to state space methods for control system design.
The frequency domain design of observer-based compensators of all orders from the full-order to the completely reduced-order compensator is covered. The design of decoupling and disturbance rejecting controllers is presented. Furthermore, solutions are given to the linear quadratic and the model matching problems. The pole assignment is facilitated by a new parametric approach which is formulated directly in the frequency domain. Anti-windup control is also investigated in the framework of the polynomial approach. Though mainly continuous-time systems are considered, the discrete-time results for disturbance rejection and linear quadratic control are also presented.
The monograph contains worked examples that can easily be reproduced by the reader, and the results are illustrated by simulations.
Design of Observer-based Compensators will be of use as a reference for control engineers, graduate students and researchers who are familiar with the time domain design and who want to become acquainted with the frequency domain design using polynomial matrices.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2912160250314
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 6164763-n
Quantità: 15 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781848825369_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 6164763-n
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781848825369
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Design of Observer-based Compensators facilitates and adds transparency to design in the frequency domain which is not as well-established among control engineers as time domain design. The presentation of the design procedures starts with a review of the time domain results; therefore, the book also provides quick access to state space methods for control system design.Frequency domain design of observer-based compensators of all orders is covered. The design of decoupling and disturbance rejecting controllers is presented, and solutions are given to the linear quadratic and the model matching problems. The pole assignment design is facilitated by a new parametric approach in the frequency domain. Anti-windup control is also investigated in the framework of the polynomial approach. The discrete-time results for disturbance rejection and linear quadratic control are also presented.The book contains worked examples that can easily be reproduced by the reader, and the results are illustrated by simulations. 285 pp. Englisch. Codice articolo 9781848825369
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Shows the reader how to interconvert time- and frequency-domain representations of the same control system The same state-space framework copes equally well with single-input, single-output and multiple-input, multiple-output systemsPet. Codice articolo 4287050
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 300. Codice articolo 263073417
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 300 51 Illus. Codice articolo 5855830
Quantità: 4 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Design of Observer-based Compensators facilitates and adds transparency to design in the frequency domain which is not as well-established among control engineers as time domain design. The presentation of the design procedures starts with a review of the time domain results; therefore, the book also provides quick access to state space methods for control system design.Frequency domain design of observer-based compensators of all orders is covered. The design of decoupling and disturbance rejecting controllers is presented, and solutions are given to the linear quadratic and the model matching problems. The pole assignment design is facilitated by a new parametric approach in the frequency domain. Anti-windup control is also investigated in the framework of the polynomial approach. The discrete-time results for disturbance rejection and linear quadratic control are also presented.The book contains worked examples that can easily be reproduced by the reader, and the results are illustrated by simulations. Codice articolo 9781848825369
Quantità: 2 disponibili