The author tackles this complex subject of Geometric algebra (a Clifford Algebra) with inimitable style, and provides an accessible and very readable introduction. The book is filled with lots of clear examples and is very well illustrated.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Since its invention, geometric algebra has been applied to various branches of physics such as cosmology and electrodynamics, and is now being embraced by the computer graphics community where it is providing new ways of solving geometric problems. It took over two thousand years to discover this algebra, which uses a simple and consistent notation to describe vectors and their products.
John Vince (best-selling author of a number of books including Geometry for Computer Graphics and Vector Analysis for Computer Graphics ) tackles this new subject in his usual inimitable style, and provides an accessible and very readable introduction.
The first five chapters review the algebras of real numbers, complex numbers, vectors, and quaternions and their associated axioms, together with the geometric conventions employed in analytical geometry. As well as putting geometric algebra into its historical context, John Vince provides chapters on Grassmann s outer product and Clifford s geometric product, followed by the application of geometric algebra to reflections, rotations, lines, planes and their intersection. The conformal model is also covered, where a 5D Minkowski space provides an unusual platform for unifying the transforms associated with 3D Euclidean space.
Filled with lots of clear examples and useful illustrations, this compact book provides an excellent introduction to geometric algebra for computer graphics.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,91 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 10,40 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781849966979_new
Quantità: Più di 20 disponibili
Da: Rarewaves.com UK, London, Regno Unito
Paperback. Condizione: New. Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems.John Vince (author of numerous books including 'Geometry for Computer Graphics' and 'Vector Analysis for Computer Graphics') has tackled this complex subject in his usual inimitable style, and provided an accessible and very readable introduction.As well as putting geometric algebra into its historical context, John tackles complex numbers and quaternions; the nature of wedge product and geometric product; reflections and rotations (showing how geometric algebra can offer a powerful way of describing orientations of objects and virtual cameras); and how to implement lines, planes, volumes and intersections. Introductory chapters also look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics. Softcover reprint of hardcover 1st ed. 2008. Codice articolo LU-9781849966979
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 504. Codice articolo C9781849966979
Quantità: Più di 20 disponibili
Da: Rarewaves.com USA, London, LONDO, Regno Unito
Paperback. Condizione: New. Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems.John Vince (author of numerous books including 'Geometry for Computer Graphics' and 'Vector Analysis for Computer Graphics') has tackled this complex subject in his usual inimitable style, and provided an accessible and very readable introduction.As well as putting geometric algebra into its historical context, John tackles complex numbers and quaternions; the nature of wedge product and geometric product; reflections and rotations (showing how geometric algebra can offer a powerful way of describing orientations of objects and virtual cameras); and how to implement lines, planes, volumes and intersections. Introductory chapters also look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics. Softcover reprint of hardcover 1st ed. 2008. Codice articolo LU-9781849966979
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9781849966979
Quantità: 10 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Filled with lots of clear examplesVery well illustratedTackles the complex subject of geometric algebra and explains, in detail, how the algebra operates together with its relationship with traditional vector analysisGeometric al. Codice articolo 4288803
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems. The author tackles this complex subject with inimitable style, and provides an accessible and very readable introduction. The book is filled with lots of clear examples and is very well illustrated. Introductory chapters look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics. 268 pp. Englisch. Codice articolo 9781849966979
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems.John Vince (author of numerous books including ¿Geometry for Computer Graphics¿ and ¿Vector Analysis for Computer Graphics¿) has tackled this complex subject in his usual inimitable style, and provided an accessible and very readable introduction.As well as putting geometric algebra into its historical context, John tackles complex numbers and quaternions; the nature of wedge product and geometric product; reflections and rotations (showing how geometric algebra can offer a powerful way of describing orientations of objects and virtual cameras); and how to implement lines, planes, volumes and intersections. Introductory chapters also look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 268 pp. Englisch. Codice articolo 9781849966979
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems.John Vince (author of numerous books including 'Geometry for Computer Graphics' and 'Vector Analysis for Computer Graphics') has tackled this complex subject in his usual inimitable style, and provided an accessible and very readable introduction.As well as putting geometric algebra into its historical context, John tackles complex numbers and quaternions; the nature of wedge product and geometric product; reflections and rotations (showing how geometric algebra can offer a powerful way of describing orientations of objects and virtual cameras); and how to implement lines, planes, volumes and intersections. Introductory chapters also look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics. Codice articolo 9781849966979
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. xvi + 256. Codice articolo 263100898
Quantità: 4 disponibili