Articoli correlati a Neural Networks for Conditional Probability Estimation:...

Neural Networks for Conditional Probability Estimation: Forecasting Beyond Point Predictions - Brossura

 
9781852330958: Neural Networks for Conditional Probability Estimation: Forecasting Beyond Point Predictions

Sinossi

Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus­ sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be­ nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1. Introduction.- 1.1 Conventional forecasting and Takens’ embedding theorem.- 1.2 Implications of observational noise.- 1.3 Implications of dynamic noise.- 1.4 Example.- 1.5 Conclusion.- 1.6 Objective of this book.- 2. A Universal Approximator Network for Predicting Conditional Probability Densities.- 2.1 Introduction.- 2.2 A single-hidden-layer network.- 2.3 An additional hidden layer.- 2.4 Regaining the conditional probability density.- 2.5 Moments of the conditional probability density.- 2.6 Interpretation of the network parameters.- 2.7 Gaussian mixture model.- 2.8 Derivative-of-sigmoid versus Gaussian mixture model.- 2.9 Comparison with other approaches.- 2.9.1 Predicting local error bars.- 2.9.2 Indirect method.- 2.9.3 Complete kernel expansion: Conditional Density Estimation Network (CDEN) and Mixture Density Network (MDN).- 2.9.4 Distorted Probability Mixture Network (DPMN).- 2.9.5 Mixture of Experts (ME) and Hierarchical Mixture of Experts (HME).- 2.9.6 Soft histogram.- 2.10 Summary.- 2.11 Appendix: The moment generating function for the DSM network.- 3. A Maximum Likelihood Training Scheme.- 3.1 The cost function.- 3.2 A gradient-descent training scheme.- 3.2.1 Output weights.- 3.2.2 Kernel widths.- 3.2.3 Remaining weights.- 3.2.4 Interpretation of the parameter adaptation rules.- 3.2.5 Deficiencies of gradient descent and their remedy.- 3.3 Summary.- 3.4 Appendix.- 4. Benchmark Problems.- 4.1 Logistic map with intrinsic noise.- 4.2 Stochastic combination of two stochastic dynamical systems.- 4.3 Brownian motion in a double-well potential.- 4.4 Summary.- 5. Demonstration of the Model Performance on the Benchmark Problems.- 5.1 Introduction.- 5.2 Logistic map with intrinsic noise.- 5.2.1 Method.- 5.2.2 Results.- 5.3 Stochastic coupling between two stochastic dynamical systems.- 5.3.1 Method.- 5.3.2 Results.- 5.3.3 Auto-pruning.- 5.4 Brownian motion in a double-well potential.- 5.4.1 Method.- 5.4.2 Results.- 5.4.3 Comparison with other approaches.- 5.5 Conclusions.- 5.6 Discussion.- 6. Random Vector Functional Link (RVFL) Networks.- 6.1 The RVFL theorem.- 6.2 Proof of the RVFL theorem.- 6.3 Comparison with the multilayer perceptron.- 6.4 A simple illustration.- 6.5 Summary.- 7. Improved Training Scheme Combining the Expectation Maximisation (EM) Algorithm with the RVFL Approach.- 7.1 Review of the Expectation Maximisation (EM) algorithm.- 7.2 Simulation: Application of the GM network trained with the EM algorithm.- 7.2.1 Method.- 7.2.2 Results.- 7.2.3 Discussion.- 7.3 Combining EM and RVFL.- 7.4 Preventing numerical instability.- 7.5 Regularisation.- 7.6 Summary.- 7.7 Appendix.- 8. Empirical Demonstration: Combining EM and RVFL.- 8.1 Method.- 8.2 Application of the GM-RVFL network to predicting the stochastic logistic-kappa map.- 8.2.1 Training a single model.- 8.2.2 Training an ensemble of models.- 8.3 Application of the GM-RVFL network to the double-well problem.- 8.3.1 Committee selection.- 8.3.2 Prediction.- 8.3.3 Comparison with other approaches.- 8.4 Discussion.- 9. A simple Bayesian regularisation scheme.- 9.1 A Bayesian approach to regularisation.- 9.2 A simple example: repeated coin flips.- 9.3 A conjugate prior.- 9.4 EM algorithm with regularisation.- 9.5 The posterior mode.- 9.6 Discussion.- 10. The Bayesian Evidence Scheme for Regularisation.- 10.1 Introduction.- 10.2 A simple illustration of the evidence idea.- 10.3 Overview of the evidence scheme.- 10.3.1 First step: Gaussian approximation to the probability in parameter space.- 10.3.2 Second step: Optimising the hyperparameters.- 10.3.3 A self-consistent iteration scheme.- 10.4 Implementation of the evidence scheme.- 10.4.1 First step: Gaussian approximation to the probability in parameter space.- 10.4.2 Second step: Optimising the hyperparameters.- 10.4.3 Algorithm.- 10.5 Discussion.- 10.5.1 Improvement over the maximum likelihood estimate.- 10.5.2 Justification of the approximations.- 10.5.3 Final remark.- 11. The Bayesian Evidence Scheme for Model Selection.- 11.1 The evidence for the model.- 11.2 An uninformative prior.- 11.3 Comparison with MacKay’s work.- 11.4 Interpretation of the model evidence.- 11.4.1 Ockham factors for the weight groups.- 11.4.2 Ockham factors for the kernel widths.- 11.4.3 Ockham factor for the priors.- 11.5 Discussion.- 12. Demonstration of the Bayesian Evidence Scheme for Regularisation.- 12.1 Method and objective.- 12.1.1 Initialisation.- 12.1.2 Different training and regularisation schemes.- 12.1.3 Pruning.- 12.2 Large Data Set.- 12.3 Small Data Set.- 12.4 Number of well-determined parameters and pruning.- 12.4.1 Automatic self-pruning.- 12.4.2 Mathematical elucidation of the pruning scheme.- 12.5 Summary and Conclusion.- 13. Network Committees and Weighting Schemes.- 13.1 Network committees for interpolation.- 13.2 Network committees for modelling conditional probability densities.- 13.3 Weighting Schemes for Predictors.- 13.3.1 Introduction.- 13.3.2 A Bayesian approach.- 13.3.3 Numerical problems with the model evidence.- 13.3.4 A weighting scheme based on the cross-validation performance.- 14. Demonstration: Committees of Networks Trained with Different Regularisation Schemes.- 14.1 Method and objective.- 14.2 Single-model prediction.- 14.3 Committee prediction.- 14.3.1 Best and average single-model performance.- 14.3.2 Improvement over the average single-model performance.- 14.3.3 Improvement over the best single-model performance.- 14.3.4 Robustness of the committee performance.- 14.3.5 Dependence on the temperature.- 14.3.6 Dependence on the temperature when including biased models.- 14.3.7 Optimal temperature.- 14.3.8 Model selection and evidence.- 14.3.9 Advantage of under-regularisation and over-fitting.- 14.4 Conclusions.- 15. Automatic Relevance Determination (ARD).- 15.1 Introduction.- 15.2 Two alternative ARD schemes.- 15.3 Mathematical implementation.- 15.4 Empirical demonstration.- 16. A Real-World Application: The Boston Housing Data.- 6.1 A real-world regression problem: The Boston house-price data.- 16.2 Prediction with a single model.- 16.2.1 Methodology.- 16.2.2 Results.- 16.3 Test of the ARD scheme.- 16.3.1 Methodology.- 16.3.2 Results.- 16.4 Prediction with network committees.- 16.4.1 Objective.- 16.4.2 Methodology.- 16.4.3 Weighting scheme and temperature.- 16.4.4 ARD parameters.- 16.4.5 Comparison between the two ARD schemes.- 16.4.6 Number of kernels.- 16.4.7 Bayesian regularisation.- 16.4.8 Network complexity.- 16.4.9 Cross-validation.- 16.5 Discussion: How overfitting can be useful.- 16.6 Increasing diversity.- 16.6.1 Bagging.- 16.6.2 Nonlinear Preprocessing.- 16.7 Comparison with Neal’s results.- 16.8 Conclusions.- 17. Summary.- 18. Appendix: Derivation of the Hessian for the Bayesian Evidence Scheme.- 18.1 Introduction and notation.- 18.2 A decomposition of the Hessian using EM.- 18.3 Explicit calculation of the Hessian.- 18.4 Discussion.- References.

Product Description

Book by Husmeier Dirk

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer
  • Data di pubblicazione2013
  • ISBN 10 1852330953
  • ISBN 13 9781852330958
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero di pagine300
  • Contatto del produttorenon disponibile

Compra usato

XXIII, 275 S. : graph. Darst. ;...
Visualizza questo articolo

EUR 11,95 per la spedizione da Germania a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781447108481: Neural Networks for Conditional Probability Estimation: Forecasting Beyond Point Predictions

Edizione in evidenza

ISBN 10:  1447108485 ISBN 13:  9781447108481
Casa editrice: Springer, 2011
Brossura

Risultati della ricerca per Neural Networks for Conditional Probability Estimation:...

Immagini fornite dal venditore

Dirk Husmeier
Editore: Springer London, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides unique, comprehensive coverage of generalisation and regularisation: Provides the first real-world test results for recent theoretical findings on the generalisation performance of committeesConventional applications of neural networks usually . Codice articolo 4289360

Contatta il venditore

Compra nuovo

EUR 48,37
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Husmeier, Dirk:
ISBN 10: 1852330953 ISBN 13: 9781852330958
Antico o usato Softcover

Da: Roland Antiquariat UG haftungsbeschränkt, Weinheim, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Softcover. XXIII, 275 S. : graph. Darst. ; 24 cm Like new. Unread book. --- Neuwertiger Zustand. Ungelesenes Buch. 9781852330958 Sprache: Deutsch Gewicht in Gramm: 467 Softcover reprint of the original 1st ed. 1999. Codice articolo 200027

Contatta il venditore

Compra usato

EUR 56,00
Convertire valuta
Spese di spedizione: EUR 11,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dirk Husmeier
ISBN 10: 1852330953 ISBN 13: 9781852330958
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 300 pp. Englisch. Codice articolo 9781852330958

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Husmeier, Dirk
Editore: Springer, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781852330958_new

Contatta il venditore

Compra nuovo

EUR 62,12
Convertire valuta
Spese di spedizione: EUR 10,67
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Husmeier, Dirk
Editore: Springer, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781852330958

Contatta il venditore

Compra nuovo

EUR 66,82
Convertire valuta
Spese di spedizione: EUR 7,89
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dirk Husmeier
Editore: Springer London, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5. Codice articolo 9781852330958

Contatta il venditore

Compra nuovo

EUR 59,97
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Dirk Husmeier
Editore: Springer London Ltd, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 497. Codice articolo C9781852330958

Contatta il venditore

Compra nuovo

EUR 68,56
Convertire valuta
Spese di spedizione: EUR 10,05
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Dirk Husmeier
Editore: Springer 2013-10-04, 2013
ISBN 10: 1852330953 ISBN 13: 9781852330958
Nuovo Paperback

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Codice articolo 6666-IUK-9781852330958

Contatta il venditore

Compra nuovo

EUR 58,98
Convertire valuta
Spese di spedizione: EUR 23,72
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Foto dell'editore

Dirk Husmeier
Editore: Springer, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 275 pages. 9.50x6.25x0.75 inches. In Stock. Codice articolo x-1852330953

Contatta il venditore

Compra nuovo

EUR 80,26
Convertire valuta
Spese di spedizione: EUR 11,87
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dirk Husmeier
Editore: Springer London Feb 1999, 1999
ISBN 10: 1852330953 ISBN 13: 9781852330958
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5. 300 pp. Englisch. Codice articolo 9781852330958

Contatta il venditore

Compra nuovo

EUR 85,55
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 1 copie di questo libro

Vedi tutti i risultati per questo libro