Articoli correlati a Tree-based Machine Learning Algorithms: Decision Trees,...

Tree-based Machine Learning Algorithms: Decision Trees, Random Forests, and Boosting - Brossura

 
9781975860974: Tree-based Machine Learning Algorithms: Decision Trees, Random Forests, and Boosting

Sinossi

Get a hands-on introduction to building and using decision trees and random forests. Tree-based machine learning algorithms are used to categorize data based on known outcomes in order to facilitate predicting outcomes in new situations. You will learn not only how to use decision trees and random forests for classification and regression, and some of their respective limitations, but also how the algorithms that build them work. Each chapter introduces a new data concern and then walks you through modifying the code, thus building the engine just-in-time. Along the way you will gain experience making decision trees and random forests work for you. This book uses Python, an easy to read programming language, as a medium for teaching you how these algorithms work, but it isn't about teaching you Python, or about using pre-built machine learning libraries specific to Python. It is about teaching you how some of the algorithms inside those kinds of libraries work and why we might use them, and gives you hands-on experience that you can take back to your favorite programming environment.

Table of Contents:

  1. A brief introduction to decision trees
  2. Chapter 1: Branching - uses a greedy algorithm to build a decision tree from data that can be partitioned on a single attribute.
  3. Chapter 2: Multiple Branches - examines several ways to partition data in order to generate multi-level decision trees.
  4. Chapter 3: Continuous Attributes - adds the ability to partition numeric attributes using greater-than.
  5. Chapter 4: Pruning - explore ways of reducing the amount of error encoded in the tree.
  6. Chapter 5: Random Forests - introduces ensemble learning and feature engineering.
  7. Chapter 6: Regression Trees - investigates numeric predictions, like age, price, and miles per gallon.
  8. Chapter 7: Boosting - adjusts the voting power of the randomly selected decision trees in the random forest in order to improve its ability to predict outcomes.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreCreateSpace Independent Publishing Platform
  • Data di pubblicazione2017
  • ISBN 10 1975860977
  • ISBN 13 9781975860974
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero di pagine110
  • Contatto del produttorenon disponibile

EUR 11,87 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Risultati della ricerca per Tree-based Machine Learning Algorithms: Decision Trees,...

Foto dell'editore

Sheppard, Clinton
ISBN 10: 1975860977 ISBN 13: 9781975860974
Nuovo Paperback
Print on Demand

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 152 pages. 9.00x6.00x0.35 inches. This item is printed on demand. Codice articolo zk1975860977

Contatta il venditore

Compra nuovo

EUR 14,59
Convertire valuta
Spese di spedizione: EUR 11,87
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Sheppard, Clinton
ISBN 10: 1975860977 ISBN 13: 9781975860974
Nuovo paperback

Da: Your Online Bookstore, Houston, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: New. Codice articolo 1975860977-11-32775449

Contatta il venditore

Compra nuovo

EUR 6,65
Convertire valuta
Spese di spedizione: EUR 68,38
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello