Articoli correlati a Deep Learning and Missing Data in Engineering Systems:...

Deep Learning and Missing Data in Engineering Systems: Applications to Engineering Systems: 48 - Rilegato

 
9783030011796: Deep Learning and Missing Data in Engineering Systems: Applications to Engineering Systems: 48

Sinossi

Deep Learning and Missing Data in Engineering Systems uses deep learning and swarm intelligence methods to cover missing data estimation in engineering systems. The missing data estimation processes proposed in the book can be applied in image recognition and reconstruction. To facilitate the imputation of missing data, several artificial intelligence approaches are presented, including:

  • deep autoencoder neural networks;
  • deep denoising autoencoder networks;
  • the bat algorithm;
  • the cuckoo search algorithm; and
  • the firefly algorithm.

The hybrid models proposed are used to estimate the missing data in high-dimensional data settings more accurately. Swarm intelligence algorithms are applied to address critical questions such as model selection and model parameter estimation. The authors address feature extraction for the purpose of reconstructing the input data from reduced dimensions by the use of deep autoencoder neural networks. They illustrate new models diagrammatically, report their findings in tables, so as to put their methods on a sound statistical basis. The methods proposed speed up the process of data estimation while preserving known features of the data matrix.

This book is a valuable source of information for researchers and practitioners in data science. Advanced undergraduate and postgraduate students studying topics in computational intelligence and big data, can also use the book as a reference for identifying and introducing new research thrusts in missing data estimation.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Tshilidzi Marwala is the Vice-Chancellor and Principal of the University of Johannesburg. He was previously the Deputy Vice-Chancellor for Research and Internationalisation as well as Dean of Engineering and the Built Environment at the University of Johannesburg. Prior to that he was the Adhominem Professor of Electrical Engineering as well as the Carl and Emily Fuchs Chair of Systems and Control Engineering at the University of the Witwatersrand. He is a Fellow of The World Academy of Sciences of the Developing World (TWAS) as well as a distinguished member of the ACM. He holds a Bachelor of Science in Mechanical Engineering from Case Western Reserve University, USA, a Master of Engineering from the University of Pretoria, South Africa, and a PhD in Engineering from the University of Cambridge, UK. He was a postdoctoral research associate at the Imperial College of Science, Technology and Medicine, and a visiting fellow at Harvard University and Cambridge University.  

Collins Leke holds a PhD and Master’s degrees from the University of Johannesburg. He also holds a Bachelor’s degree in Computer Science and Applied Mathematics from the University of the Witwatersrand. His research interests include the application of machine learning and computational intelligence to electrical and biomedical engineering, as well as in finance and insurance.


Dalla quarta di copertina

Deep Learning and Missing Data in Engineering Systems uses deep learning and swarm intelligence methods to cover missing data estimation in engineering systems. The missing data estimation processes proposed in the book can be applied in image recognition and reconstruction. To facilitate the imputation of missing data, several artificial intelligence approaches are presented, including:

  • deep autoencoder neural networks;
  • deep denoising autoencoder networks;
  • the bat algorithm;
  • the cuckoo search algorithm; and
  • the firefly algorithm.

The hybrid models proposed are used to estimate the missing data in high-dimensional data settings more accurately. Swarm intelligence algorithms are applied to address critical questions such as model selection and model parameter estimation. The authors address feature extraction for the purpose of reconstructing the input data from reduced dimensions by the use of deep autoencoder neural networks. They illustrate new models diagrammatically, report their findings in tables, so as to put their methods on a sound statistical basis. The methods proposed speed up the process of data estimation while preserving known features of the data matrix.

This book is a valuable source of information for researchers and practitioners in data science. Advanced undergraduate and postgraduate students studying topics in computational intelligence and big data, can also use the book as a reference for identifying and introducing new research thrusts in missing data estimation.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

25 cm. XIV, 179 p. Hardcover. Versand...
Visualizza questo articolo

EUR 10,00 per la spedizione da Germania a Italia

Destinazione, tempi e costi

EUR 7,73 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Risultati della ricerca per Deep Learning and Missing Data in Engineering Systems:...

Foto dell'editore

Leke, Collins Achepsah; Marwala, Tshilidzi
Editore: Cham, Springer., 2019
ISBN 10: 3030011798 ISBN 13: 9783030011796
Antico o usato Rilegato

Da: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

25 cm. XIV, 179 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Studies in Big Data. Volume 48. Sprache: Englisch. Codice articolo 6773FB

Contatta il venditore

Compra usato

EUR 19,00
Convertire valuta
Spese di spedizione: EUR 10,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Leke, Collins Achepsah; Marwala, Tshilidzi
Editore: Springer, 2019
ISBN 10: 3030011798 ISBN 13: 9783030011796
Nuovo Rilegato

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26376460888

Contatta il venditore

Compra nuovo

EUR 117,80
Convertire valuta
Spese di spedizione: EUR 7,73
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Leke, Collins Achepsah; Marwala, Tshilidzi
Editore: Springer, 2019
ISBN 10: 3030011798 ISBN 13: 9783030011796
Nuovo Rilegato

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 369617287

Contatta il venditore

Compra nuovo

EUR 123,13
Convertire valuta
Spese di spedizione: EUR 10,22
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Leke, Collins Achepsah; Marwala, Tshilidzi
Editore: Springer, 2019
ISBN 10: 3030011798 ISBN 13: 9783030011796
Nuovo Rilegato

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 18376460882

Contatta il venditore

Compra nuovo

EUR 126,29
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Collins Achepsah Leke|Tshilidzi Marwala
ISBN 10: 3030011798 ISBN 13: 9783030011796
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Adopts and applies&nbspswarm intelligence algorithms&nbspto address critical questions such as model selection and model parameter estimationProposes new paradigms of machine learning and computational intelligence in missing data esti. Codice articolo 241310952

Contatta il venditore

Compra nuovo

EUR 136,16
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tshilidzi Marwala
ISBN 10: 3030011798 ISBN 13: 9783030011796
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Deep Learning and Missing Data in Engineering Systems uses deep learning and swarm intelligence methods to cover missing data estimation in engineering systems. The missing data estimation processes proposed in the book can be applied in image recognition and reconstruction. To facilitate the imputation of missing data, several artificial intelligence approaches are presented, including:deep autoencoder neural networks;deep denoising autoencoder networks;the bat algorithm;the cuckoo search algorithm; andthe firefly algorithm. The hybrid models proposed are used to estimate the missing data in high-dimensional data settings more accurately. Swarm intelligence algorithms are applied to address critical questions such as model selection and model parameter estimation. The authors address feature extraction for the purpose of reconstructing the input data from reduced dimensions by the use of deep autoencoder neural networks. They illustrate new models diagrammatically, report their findings in tables, so as to put their methods on a sound statistical basis. The methods proposed speed up the process of data estimation while preserving known features of the data matrix. This book is a valuable source of information for researchers and practitioners in data science. Advanced undergraduate and postgraduate students studying topics in computational intelligence and big data, can also use the book as a reference for identifying and introducing new research thrusts in missing data estimation. 196 pp. Englisch. Codice articolo 9783030011796

Contatta il venditore

Compra nuovo

EUR 160,49
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tshilidzi Marwala
ISBN 10: 3030011798 ISBN 13: 9783030011796
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Deep Learning and Missing Data in Engineering Systems uses deep learning and swarm intelligence methods to cover missing data estimation in engineering systems. The missing data estimation processes proposed in the book can be applied in image recognition and reconstruction. To facilitate the imputation of missing data, several artificial intelligence approaches are presented, including:deep autoencoder neural networks;deep denoising autoencoder networks;the bat algorithm;the cuckoo search algorithm; andthe firefly algorithm. The hybrid models proposed are used to estimate the missing data in high-dimensional data settings more accurately. Swarm intelligence algorithms are applied to address critical questions such as model selection and model parameter estimation. The authors address feature extraction for the purpose of reconstructing the input data from reduced dimensions by the use of deep autoencoder neural networks. They illustrate new models diagrammatically, report their findings in tables, so as to put their methods on a sound statistical basis. The methods proposed speed up the process of data estimation while preserving known features of the data matrix. This book is a valuable source of information for researchers and practitioners in data science. Advanced undergraduate and postgraduate students studying topics in computational intelligence and big data, can also use the book as a reference for identifying and introducing new research thrusts in missing data estimation. Codice articolo 9783030011796

Contatta il venditore

Compra nuovo

EUR 160,49
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tshilidzi Marwala
ISBN 10: 3030011798 ISBN 13: 9783030011796
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -Deep Learning and Missing Data in Engineering Systems uses deep learning and swarm intelligence methods to cover missing data estimation in engineering systems. The missing data estimation processes proposed in the book can be applied in image recognition and reconstruction. To facilitate the imputation of missing data, several artificial intelligence approaches are presented, including:Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 196 pp. Englisch. Codice articolo 9783030011796

Contatta il venditore

Compra nuovo

EUR 160,49
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Leke, Collins Achepsah, Marwala, Tshilidzi
Editore: Springer, 2018
ISBN 10: 3030011798 ISBN 13: 9783030011796
Nuovo Rilegato

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: New. New. book. Codice articolo ERICA77330300117986

Contatta il venditore

Compra nuovo

EUR 204,62
Convertire valuta
Spese di spedizione: EUR 28,87
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello