Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Jan A. Snyman currently holds the position of emeritus professor in the Department of Mechanical and Aeronautical Engineering of the University of Pretoria, having retired as full professor in 2005. He has taught physics, mathematics and engineering mechanics to science and engineering students at undergraduate and postgraduate level, and has supervised the theses of 26 Masters and 8 PhD students. His research mainly concerns the development of gradient-based trajectory optimization algorithms for solving noisy and multi-modal problems, and their application in approximation methodologies for the optimal design of engineering systems. He has authored or co-authored 89 research articles in peer-reviewed journals as well as numerous papers in international conference proceedings.
Daniel N. Wilke is a senior lecturer in the Department of Mechanical and Aeronautical Engineering of the University of Pretoria. He teaches computer programming, mathematical programming and computational mechanics to science and engineering students at undergraduate and postgraduate level. His current research focuses on the development of interactive design optimization technologies, and enabling statistical learning (artificial intelligence) application layers, for industrial processes and engineering design. He has co-authored over 50 peer-reviewed journal articles and full length conference papers.
This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and directly applicable. Numerical examples and exercises are included to encourage senior- to graduate-level students to plan, execute, and reflect on numerical investigations. By gaining a deep understanding of the conceptual material presented, students, scientists, and engineers will be able to develop systematic and scientific numerical investigative skills.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,04 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiGRATIS per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-258720
Quantità: 3 disponibili
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-308247
Quantità: 1 disponibili
Da: SMASS Sellers, IRVING, TX, U.S.A.
Condizione: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Codice articolo ASNT3-308247
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 400. Codice articolo 26376092801
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 400. Codice articolo 371001182
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. 400. Codice articolo 18376092811
Quantità: 4 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Guides readers to understand processes and strategies in real world optimization problemsContains new material on gradient-based methods, algorithm implementation via Python, and basic optimization principlesCovers fu. Codice articolo 448671510
Quantità: Più di 20 disponibili
Da: ALLBOOKS1, Direk, SA, Australia
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Codice articolo SHUB258720
Quantità: 3 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents basic optimization principles and gradient-based algorithms to a general audience, in a brief and easy-to-read form. It enables professionals to apply optimization theory to engineering, physics, chemistry, or business economics. 400 pp. Englisch. Codice articolo 9783030084868
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements ofgradient-only optimization strategies to handlediscontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies andnumerical optimizationusing Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and directly applicable. Numerical examples and exercises are included to encourage senior- to graduate-level students to plan, execute, and reflect on numerical investigations. By gaining a deep understanding of the conceptual material presented, students, scientists, and engineers will be able to develop systematic and scientific numerical investigative skills. Codice articolo 9783030084868
Quantità: 1 disponibili