Articoli correlati a Deep Learning for Nlp and Speech Recognition

Deep Learning for Nlp and Speech Recognition - Brossura

 
9783030145989: Deep Learning for Nlp and Speech Recognition

Sinossi

This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights  into  using  the  tools  and  libraries  for  real-world  applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience.  


Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. 

The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are:

      Machine Learning, NLP, and Speech Introduction

The first part has three chapters that introduce readers to the fields of  NLP, speech recognition,  deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries.

      Deep Learning Basics

The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks.

      Advanced Deep Learning Techniques for Text and Speech

The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies. 

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Uday Kamath has more than 20 years of experience architecting and building analytics-based commercial solutions. He currently works as the Chief Analytics Officer at Digital Reasoning, one of the leading companies in AI for NLP and Speech Recognition, heading the Applied Machine Learning research group. Most recently, Uday served as the Chief Data Scientist at BAE Systems Applied Intelligence, building machine learning products and solutions for the financial industry, focused on fraud, compliance, and cybersecurity. Uday has previously authored many books on machine learning such as Machine Learning: End-to-End guide for Java developers: Data Analysis, Machine Learning, and Neural Networks simplified and Mastering Java Machine Learning: A Java developer's guide to implementing machine learning and big data architectures. Uday has published many academic papers in different machine learning journals and conferences. Uday has a Ph.D. in Big Data Machine Learning and was one of the first in generalized scaling of machine learning algorithms using evolutionary computing.

John Liu spent the past 22 years managing quantitative research, portfolio management and data science teams. He is currently CEO of Intelluron Corporation, an emerging AI-as-a-service solution company. Most recently, John was head of data science and data strategy as VP at Digital Reasoning. Previously, he was CIO of Spartus Capital, a quantitative investment firm in New York. Prior to that, John held senior executive roles at Citigroup, where he oversaw the portfolio solutions group that advised institutional clients on quantitative investment and risk strategies; at the Indiana Public Employees pension, where he managed the $7B public equities portfolio; at Vanderbilt University, where he oversaw the $2B equity and alternative investment portfolios; and at BNP Paribas, where he managed the US index options and MSCI delta-one trading desks. He is known for his expertise in reinforcement learning applied to investment management and has authored numerous papers and book chapters on topics including natural language processing, representation learning, systemic risk, asset allocation, and EM theory. In 2016, John was named Nashville's Data Scientist of the Year. He earned his B.S., M.S., and Ph.D. in electrical engineering from the University of Pennsylvania and is a CFA Charterholder.

James (Jimmy) Whitaker manages Applied Research at Digital Reasoning. He currently leads deep learning developments in speech analytics in the FinTech space, and has spent the last 4 years building machine learning applications for NLP, Speech Recognition, and Computer Vision. He received his masters in Computer Science from the University of Oxford, where he received a distinction for his application of machine learning in the field of Steganalysis after completing his undergraduate degrees in Electrical Engineering and Computer Science from Christian Brothers University. Prior to his work in deep learning, Jimmy worked as a concept engineer and risk manager for complex transportation initiatives.

Dalla quarta di copertina

With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights  into  using  the  tools  and  libraries  for  real-world  applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. 


The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are:

      Machine Learning, NLP, and Speech Introduction

The first part has three chapters that introduce readers to the fields of  NLP, speech recognition,  deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries.

      Deep Learning Basics

The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks.

      Advanced Deep Learning Techniques for Text and Speech

The third part has five chapters that discuss the latest and cutting-edge research inthe areas of deep learning that intersect with NLP and speech. Topics includingattention mechanisms, memory augmented networks, transfer learning, multi-tasklearning, domain adaptation, reinforcement learning, and end-to-end deep learning forspeech recognition are covered using case studies. 

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer-Nature New York Inc
  • Data di pubblicazione2020
  • ISBN 10 3030145980
  • ISBN 13 9783030145989
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero di pagine621
  • Contatto del produttorenon disponibile

Compra usato

Condizioni: molto buono
May have limited writing in cover...
Visualizza questo articolo

EUR 16,17 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

GRATIS per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783030145958: Deep Learning for NLP and Speech Recognition

Edizione in evidenza

ISBN 10:  3030145956 ISBN 13:  9783030145958
Casa editrice: Springer-Nature New York Inc, 2019
Rilegato

Risultati della ricerca per Deep Learning for Nlp and Speech Recognition

Foto dell'editore

Kamath, Uday; Liu, John; Whitaker, James
Editore: Springer, 2020
ISBN 10: 3030145980 ISBN 13: 9783030145989
Antico o usato Paperback

Da: ThriftBooks-Dallas, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 2.45. Codice articolo G3030145980I4N00

Contatta il venditore

Compra usato

EUR 55,49
Convertire valuta
Spese di spedizione: EUR 16,17
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Kamath, Uday; Liu, John; Whitaker, James
Editore: Springer, 2020
ISBN 10: 3030145980 ISBN 13: 9783030145989
Nuovo Brossura

Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-27875

Contatta il venditore

Compra nuovo

EUR 72,18
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

0
Editore: Springer, 2020
ISBN 10: 3030145980 ISBN 13: 9783030145989
Nuovo Brossura

Da: Basi6 International, Irving, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-13105

Contatta il venditore

Compra nuovo

EUR 72,18
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Uday Kamath|John Liu|James Whitaker
ISBN 10: 3030145980 ISBN 13: 9783030145989
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A comprehensive resource that builds up from elementary deep learning, text, and speech principles to advanced state-of-the-art neural architecturesA ready reference for deep learning techniques applicable to common NLP and speech recognition appl. Codice articolo 458533589

Contatta il venditore

Compra nuovo

EUR 75,30
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Kamath, Uday; Liu, John; Whitaker, James
Editore: Springer, 2020
ISBN 10: 3030145980 ISBN 13: 9783030145989
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 621. Codice articolo 26378521491

Contatta il venditore

Compra nuovo

EUR 79,54
Convertire valuta
Spese di spedizione: EUR 7,91
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Kamath, Uday; Liu, John; Whitaker, James
Editore: Springer, 2020
ISBN 10: 3030145980 ISBN 13: 9783030145989
Nuovo Brossura

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 621. Codice articolo 385382476

Contatta il venditore

Compra nuovo

EUR 77,13
Convertire valuta
Spese di spedizione: EUR 10,50
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Kamath, Uday; Liu, John; Whitaker, James
Editore: Springer, 2020
ISBN 10: 3030145980 ISBN 13: 9783030145989
Nuovo Brossura

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 621. Codice articolo 18378521497

Contatta il venditore

Compra nuovo

EUR 83,61
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Uday Kamath
ISBN 10: 3030145980 ISBN 13: 9783030145989
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition.With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications.Deep Learning for NLP and Speech Recognitionexplains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience.Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book.The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech IntroductionThe first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning BasicsThe five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and SpeechThe third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies. 621 pp. Englisch. Codice articolo 9783030145989

Contatta il venditore

Compra nuovo

EUR 85,59
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Uday Kamath
ISBN 10: 3030145980 ISBN 13: 9783030145989
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware - This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition.With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications.Deep Learning for NLP and Speech Recognitionexplains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience.Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book.The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech IntroductionThe first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning BasicsThe five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and SpeechThe third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies. Codice articolo 9783030145989

Contatta il venditore

Compra nuovo

EUR 85,59
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Uday Kamath, John Liu, James Whitaker
Editore: Springer-Verlag GmbH, 2020
ISBN 10: 3030145980 ISBN 13: 9783030145989
Antico o usato Brossura

Da: Buchpark, Maidenhead, Berkshire, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Fine. Condition: Fine | Pages: 621 | Language: English | Product Type: Books. Codice articolo 37758599/22

Contatta il venditore

Compra usato

EUR 53,76
Convertire valuta
Spese di spedizione: EUR 47,46
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 10 copie di questo libro

Vedi tutti i risultati per questo libro