Articoli correlati a Unsupervised Feature Extraction Applied to Bioinformatics:...

Unsupervised Feature Extraction Applied to Bioinformatics: A PCA Based and TD Based Approach - Rilegato

 
9783030224554: Unsupervised Feature Extraction Applied to Bioinformatics: A PCA Based and TD Based Approach

Sinossi

This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. 


  • Allows readers to analyze data sets with small samples and many features;
  • Provides a fast algorithm, based upon linear algebra, to analyze big data;
  • Includes several applications to multi-view data analyses, with a focus on bioinformatics.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Prof. Taguchi is currently a Professor at Department of Physics, Chuo University. Prof. Taguchi received a master degree in Statistical Physics from Tokyo Institute of Technology, Japan in 1986, and PhD degree in Non-linear Physics from Tokyo Institute of Technology, Tokyo, Japan in 1988. He worked at Tokyo Institute of Technology and Chuo University. He is with Chuo University (Tokyo, Japan) since 1997. He currently holds the Professor position at this university. His main research interests are in the area of Bioinformatics, especially, multi-omics data analysis using linear algebra. Dr. Taguchi has published a book on bioinformatics, more than 100 journal papers, book chapters and papers in conference proceedings. 

 

Dalla quarta di copertina

This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. 


  • Allows readers to analyzedata sets with small samples and many features;
  • Provides a fast algorithm, based upon linear algebra, to analyze big data;
  • Includes several applications to multi-view data analyses, with a focus on bioinformatics.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer Nature
  • Data di pubblicazione2019
  • ISBN 10 3030224554
  • ISBN 13 9783030224554
  • RilegaturaCopertina rigida
  • LinguaInglese
  • Numero di pagine321
  • Contatto del produttorenon disponibile

Compra usato

Unread, with some shelfwear. Immediately...
Visualizza questo articolo

EUR 11,90 per la spedizione da Germania a Italia

Destinazione, tempi e costi

EUR 11,90 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783030224585: Unsupervised Feature Extraction Applied to Bioinformatics: A PCA Based and TD Based Approach

Edizione in evidenza

ISBN 10:  3030224589 ISBN 13:  9783030224585
Casa editrice: Springer, 2020
Brossura

Risultati della ricerca per Unsupervised Feature Extraction Applied to Bioinformatics:...

Foto dell'editore

Taguchi, Y-h.
Editore: Springer, 2019
ISBN 10: 3030224554 ISBN 13: 9783030224554
Antico o usato Rilegato Prima edizione

Da: SpringBooks, Berlin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Very Good. 1. Auflage. Unread, with some shelfwear. Immediately dispatched from Germany. Codice articolo CEE-2402C-BIKINI-10-1000

Contatta il venditore

Compra usato

EUR 62,58
Convertire valuta
Spese di spedizione: EUR 11,90
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Taguchi, Y-h. (Author)
Editore: Springer, 2019
ISBN 10: 3030224554 ISBN 13: 9783030224554
Nuovo Rilegato

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Brand New. 321 pages. 9.25x6.25x0.75 inches. In Stock. Codice articolo zk3030224554

Contatta il venditore

Compra nuovo

EUR 238,03
Convertire valuta
Spese di spedizione: EUR 11,90
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello