Articoli correlati a Forecasting and Assessing Risk of Individual Electricity...

Forecasting and Assessing Risk of Individual Electricity Peaks - Brossura

 
9783030286682: Forecasting and Assessing Risk of Individual Electricity Peaks

Sinossi

The overarching aim of this open access book is to present self-contained theory and algorithms for investigation and prediction of electric demand peaks. A cross-section of popular demand forecasting algorithms from statistics, machine learning and mathematics is presented, followed by extreme value theory techniques with examples.

In order to achieve carbon targets, good forecasts of peaks are essential. For instance, shifting demand or charging battery depends on correct demand predictions in time. Majority of forecasting algorithms historically were focused on average load prediction. In order to model the peaks, methods from extreme value theory are applied. This allows us to study extremes without making any assumption on the central parts of demand distribution and to predict beyond the range of available data.

While applied on individual loads, the techniques described in this book can be extended naturally to substations, or to commercial settings.Extreme value theory techniques presented can be also used across other disciplines, for example for predicting heavy rainfalls, wind speed, solar radiation and extreme weather events. The book is intended for students, academics, engineers and professionals that are interested in short term load prediction, energy data analytics, battery control, demand side response and data science in general. 


Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Maria Jacob completed a masters with the Mathematics of Planet Earth Centre for Doctoral training of University of Reading and Imperial College London. She is interested in using statistics and data science methods particularly within the public sector.

Cláudia Neves is a Lecturer at the University of Reading. For over 10 years, her research in extreme value statistics has been informed as much as driven by a number of applications arising in hydrology (heavy rainfall) demography (supercentenarian’s lifespan), public health, and more recently, in the energy sector (e.g. electricity demand, safety issues in nuclear infrastructure). She has been awarded an EPRSC Innovation Fellowship for the project "Multivariate Max-stable Processes with Application to the Forecasting of Multiple Hazards".

Danica Vukadinovic Greetham is Senior Research Fellow at the Open University’s Knowledge Media Institute. Her expertise is in network analysis and optimisation with background in mathematics (BSc, University of Belgrade) and computer science (PhD, ETHZ) and over 15 years of industrial and academic experience.  Her research interests include modelling and predicting human behaviour from big data, and mathematical modelling of low voltage networks. 




Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: buono
Most items will be dispatched the...
Visualizza questo articolo

EUR 6,94 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

Risultati della ricerca per Forecasting and Assessing Risk of Individual Electricity...

Immagini fornite dal venditore

Jacob, Maria,Neves, Cludia,Vukadinovic Greetham, Danica
Editore: Springer, 2019
ISBN 10: 3030286681 ISBN 13: 9783030286682
Antico o usato Brossura

Da: WeBuyBooks, Rossendale, LANCS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Good. Most items will be dispatched the same or the next working day. A copy that has been read but remains in clean condition. All of the pages are intact and the cover is intact and the spine may show signs of wear. The book may have minor markings which are not specifically mentioned. Codice articolo wbb0024197842

Contatta il venditore

Compra usato

EUR 9,22
Convertire valuta
Spese di spedizione: EUR 6,94
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Maria Jacob|Cláudia Neves|Danica Vukadinovic Greetham
ISBN 10: 3030286681 ISBN 13: 9783030286682
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents a self-contained theory and algorithms for individual energy load peak predictionImplementations are available in Python in RUses case studies on publicly available data and has accessible chapters with examples on extreme v. Codice articolo 448677885

Contatta il venditore

Compra nuovo

EUR 22,04
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Maria Jacob
ISBN 10: 3030286681 ISBN 13: 9783030286682
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The overarching aim of this open access book is to present self-contained theory and algorithms for investigation and prediction of electric demand peaks. A cross-section of popular demand forecasting algorithms from statistics, machine learning and mathematics is presented, followed by extreme value theory techniques with examples.In order to achieve carbon targets, good forecasts of peaks are essential. For instance, shifting demand or charging battery depends on correct demand predictions in time. Majority of forecasting algorithms historically were focused on average load prediction. In order to model the peaks, methods from extreme value theory are applied. This allows us to study extremes without making any assumption on the central parts of demand distribution and to predict beyond the range of available data. While applied on individual loads, the techniques described in this book can be extended naturally to substations, or to commercial settings. Extreme value theory techniques presented can be also used across other disciplines, for example for predicting heavy rainfalls, wind speed, solar radiation and extreme weather events. The book is intended for students, academics, engineers and professionals that are interested in short term load prediction, energy data analytics, battery control, demand side response and data science in general. 112 pp. Englisch. Codice articolo 9783030286682

Contatta il venditore

Compra nuovo

EUR 21,39
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Maria Jacob
ISBN 10: 3030286681 ISBN 13: 9783030286682
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The overarching aim of this open access book is to present self-contained theory and algorithms for investigation and prediction of electric demand peaks. A cross-section of popular demand forecasting algorithms from statistics, machine learning and mathematics is presented, followed by extreme value theory techniques with examples.In order to achieve carbon targets, good forecasts of peaks are essential. For instance, shifting demand or charging battery depends on correct demand predictions in time. Majority of forecasting algorithms historically were focused on average load prediction. In order to model the peaks, methods from extreme value theory are applied. This allows us to study extremes without making any assumption on the central parts of demand distribution and to predict beyond the range of available data. While applied on individual loads, the techniques described in this book can be extended naturally to substations, or to commercial settings.Extreme value theory techniques presented can be also used across other disciplines, for example for predicting heavy rainfalls, wind speed, solar radiation and extreme weather events. The book is intended for students, academics, engineers and professionals that are interested in short term load prediction, energy data analytics, battery control, demand side response and data science in general. Codice articolo 9783030286682

Contatta il venditore

Compra nuovo

EUR 21,39
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Maria Jacob
ISBN 10: 3030286681 ISBN 13: 9783030286682
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -The overarching aim of this open access book is to present self-contained theory and algorithms for investigation and prediction of electric demand peaks. A cross-section of popular demand forecasting algorithms from statistics, machine learning and mathematics is presented, followed by extreme value theory techniques with examples.In order to achieve carbon targets, good forecasts of peaks are essential. For instance, shifting demand or charging battery depends on correct demand predictions in time. Majority of forecasting algorithms historically were focused on average load prediction. In order to model the peaks, methods from extreme value theory are applied. This allows us to study extremes without making any assumption on the central parts of demand distribution and to predict beyond the range of available data.While applied on individual loads, the techniques described in this book can be extended naturally to substations, or to commercial settings.Extreme value theory techniques presented can be also used across other disciplines, for example for predicting heavy rainfalls, wind speed, solar radiation and extreme weather events. The book is intended for students, academics, engineers and professionals that are interested in short term load prediction, energy data analytics, battery control, demand side response and data science in general.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 112 pp. Englisch. Codice articolo 9783030286682

Contatta il venditore

Compra nuovo

EUR 21,39
Convertire valuta
Spese di spedizione: EUR 15,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Jacob, Maria; Neves, Cláudia; Vukadinovi? Greetham, Danica
Editore: Springer, 2019
ISBN 10: 3030286681 ISBN 13: 9783030286682
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783030286682_new

Contatta il venditore

Compra nuovo

EUR 27,07
Convertire valuta
Spese di spedizione: EUR 10,39
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Maria Jacob, Cl�udia Neves, Danica Vukadinovic Greetham
Editore: Springer 2019-10-07, 2019
ISBN 10: 3030286681 ISBN 13: 9783030286682
Nuovo Paperback

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Codice articolo 6666-IUK-9783030286682

Contatta il venditore

Compra nuovo

EUR 22,71
Convertire valuta
Spese di spedizione: EUR 23,11
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Foto dell'editore

Jacob, Maria/ Neves, Cláudia/ Greetham, Danica Vukadinovic
Editore: Springer Verlag, 2019
ISBN 10: 3030286681 ISBN 13: 9783030286682
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 97 pages. 9.00x6.00x0.50 inches. In Stock. Codice articolo x-3030286681

Contatta il venditore

Compra nuovo

EUR 35,24
Convertire valuta
Spese di spedizione: EUR 11,56
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Jacob, Maria; Neves, Cláudia; Vukadinovi? Greetham, Danica
Editore: Springer, 2019
ISBN 10: 3030286681 ISBN 13: 9783030286682
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar3113020012404

Contatta il venditore

Compra nuovo

EUR 24,79
Convertire valuta
Spese di spedizione: EUR 64,18
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello