This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.
This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Ovidiu Calin, a graduate from University of Toronto, is a professor at Eastern Michigan University and a former visiting professor at Princeton University and University of Notre Dame. He has delivered numerous lectures at several universities in Japan, Hong Kong, Taiwan, and Kuwait over the last 15 years. His publications include over 60 articles and 8 books in the fields of machine learning, computational finance, stochastic processes, variational calculus and geometric analysis.
This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.
This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 13,78 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiDa: Jenson Books Inc, Logan, UT, U.S.A.
paperback. Condizione: Good. The item is in good condition and works perfectly, however it is showing some signs of previous ownership which could include: small tears, scuffing, notes, highlighting, gift inscriptions, and library markings. Codice articolo 4BQGBJ014YE1
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 43170841
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783030367237_new
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 43170841-n
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9783030367237
Quantità: 10 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 43170841-n
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject. 792 pp. Englisch. Codice articolo 9783030367237
Quantità: 1 disponibili
Da: Rarewaves.com USA, London, LONDO, Regno Unito
Paperback. Condizione: New. 1st ed. 2020. This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject. Codice articolo LU-9783030367237
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 43170841
Quantità: Più di 20 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEOCT25-233399
Quantità: 1 disponibili