This textbook explores a selection of topics in complex analysis. From core material in the mainstream of complex analysis itself, to tools that are widely used in other areas of mathematics, this versatile compilation offers a selection of many different paths. Readers interested in complex analysis will appreciate the unique combination of topics and connections collected in this book.
Beginning with a review of the main tools of complex analysis, harmonic analysis, and functional analysis, the authors go on to present multiple different, self-contained avenues to proceed. Chapters on linear fractional transformations, harmonic functions, and elliptic functions offer pathways to hyperbolic geometry, automorphic functions, and an intuitive introduction to the Schwarzian derivative. The gamma, beta, and zeta functions lead into L-functions, while a chapter on entire functions opens pathways to the Riemann hypothesis and Nevanlinna theory. Cauchy transforms give riseto Hilbert and Fourier transforms, with an emphasis on the connection to complex analysis. Valuable additional topics include Riemann surfaces, steepest descent, tauberian theorems, and the Wiener–Hopf method.
Showcasing an array of accessible excursions, Explorations in Complex Functions is an ideal companion for graduate students and researchers in analysis and number theory. Instructors will appreciate the many options for constructing a second course in complex analysis that builds on a first course prerequisite; exercises complement the results throughout.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Richard Beals is Professor Emeritus of Mathematics at Yale University. His research interests include ordinary and partial differential equations, operator theory, integrable systems, and transport theory. He has authored many books, including Advanced Mathematical Analysis, published in 1973 as the twelfth volume in the series Graduate Texts in Mathematics.
Roderick S. C. Wong is Professor Emeritus of Mathematics at the City University of Hong Kong. His research interests include asymptotic analysis, perturbation methods, and special functions. He has been president of the Canadian Applied Mathematics Society and the Hong Kong Mathematical Society, and received numerous professional honors, including election to the European Academy of Sciences in 2007. He has written and edited a wide variety of books, with several notable works in the area of special functions.This is the third book in the authors’ collaboration, after two previous volumeson special functions.This textbook explores a selection of topics in complex analysis. From core material in the mainstream of complex analysis itself, to tools that are widely used in other areas of mathematics, this versatile compilation offers a selection of many different paths. Readers interested in complex analysis will appreciate the unique combination of topics and connections collected in this book.
Beginning with a review of the main tools of complex analysis, harmonic analysis, and functional analysis, the authors go on to present multiple different, self-contained avenues to proceed. Chapters on linear fractional transformations, harmonic functions, and elliptic functions offer pathways to hyperbolic geometry, automorphic functions, and an intuitive introduction to the Schwarzian derivative. The gamma, beta, and zeta functions lead into L-functions, while a chapter on entire functions opens pathways to the Riemann hypothesis and Nevanlinna theory. Cauchy transforms give rise to Hilbert and Fourier transforms, with an emphasis on the connection to complex analysis. Valuable additional topics include Riemann surfaces, steepest descent, tauberian theorems, and the Wiener–Hopf method.
Showcasing an array of accessible excursions, Explorations in Complex Functions is an ideal companion for graduate students and researchers in analysis and number theory. Instructors will appreciate the many options for constructing a second course in complex analysis that builds on a first course prerequisite; exercises complement the results throughout.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 3,42 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26394574160
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. This item is printed on demand. Codice articolo 401802895
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18394574170
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook explores a selection of topics in complex analysis. From core material in the mainstream of complex analysis itself, to tools that are widely used in other areas of mathematics, this versatile compilation offers a selection of many different paths. Readers interested in complex analysis will appreciate the unique combination of topics and connections collected in this book. Beginning with a review of the main tools of complex analysis, harmonic analysis, and functional analysis, the authors go on to present multiple different, self-contained avenues to proceed. Chapters on linear fractional transformations, harmonic functions, and elliptic functions offer pathways to hyperbolic geometry, automorphic functions, and an intuitive introduction to the Schwarzian derivative. The gamma, beta, and zeta functions lead into L-functions, while a chapter on entire functions opens pathways to the Riemann hypothesis and Nevanlinna theory. Cauchy transforms give rise to Hilbert and Fourier transforms, with an emphasis on the connection to complex analysis. Valuable additional topics include Riemann surfaces, steepest descent, tauberian theorems, and the Wiener-Hopf method.Showcasing an array of accessible excursions, Explorations in Complex Functions is an ideal companion for graduate students and researchers in analysis and number theory. Instructors will appreciate the many options for constructing a second course in complex analysis that builds on a first course prerequisite; exercises complement the results throughout. 353 pp. Englisch. Codice articolo 9783030545352
Quantità: 2 disponibili
Da: UK BOOKS STORE, London, LONDO, Regno Unito
Papeback. Condizione: New. Brand New ! Fast Delivery "International Edition " and ship within 24-48 hours. Deliver by FedEx and Dhl, & Aramex, UPS, & USPS and we do accept APO and PO BOX Addresses. Order can be delivered worldwide within 4-6 Working days .and we do have flat rate for up to 2LB. Extra shipping charges will be requested This Item May be shipped from India, United states & United Kingdom. Depending on your location and availability. Codice articolo AT 9783030545352
Quantità: 4 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Illustrates a unique, accessible range of topics relevant across analysis and number theoryIncludes pathways toward applications of the Schwarzian, the Riemann hypothesis, and parametrization of Riemann surfacesOffers many self-contained op. Codice articolo 512678451
Quantità: Più di 20 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Paperback. Condizione: New. New. book. Codice articolo ERICA79630305453506
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook explores a selection of topics in complex analysis. From core material in the mainstream of complex analysis itself, to tools that are widely used in other areas of mathematics, this versatile compilation offers a selection of many different paths. Readers interested in complex analysis will appreciate the unique combination of topics and connections collected in this book. Beginning with a review of the main tools of complex analysis, harmonic analysis, and functional analysis, the authors go on to present multiple different, self-contained avenues to proceed. Chapters on linear fractional transformations, harmonic functions, and elliptic functions offer pathways to hyperbolic geometry, automorphic functions, and an intuitive introduction to the Schwarzian derivative. The gamma, beta, and zeta functions lead into L-functions, while a chapter on entire functions opens pathways to the Riemann hypothesis and Nevanlinna theory. Cauchy transforms give riseto Hilbert and Fourier transforms, with an emphasis on the connection to complex analysis. Valuable additional topics include Riemann surfaces, steepest descent, tauberian theorems, and the Wiener-Hopf method.Showcasing an array of accessible excursions, Explorations in Complex Functions is an ideal companion for graduate students and researchers in analysis and number theory. Instructors will appreciate the many options for constructing a second course in complex analysis that builds on a first course prerequisite; exercises complement the results throughout. Codice articolo 9783030545352
Quantità: 2 disponibili