Articoli correlati a Time Expression and Named Entity Recognition

Time Expression and Named Entity Recognition - Rilegato

 
9783030789602: Time Expression and Named Entity Recognition

Sinossi

This book presents a synthetic analysis about the characteristics of time expressions and named entities, and some proposed methods for leveraging these characteristics to recognize time expressions and named entities from unstructured text. For modeling these two kinds of entities, the authors propose a rule-based method that introduces an abstracted layer between the specific words and the rules, and two learning-based methods that define a new type of tagging scheme based on the constituents of the entities, different from conventional position-based tagging schemes that cause the problem of inconsistent tag assignment. The authors also find that the length-frequency of entities follows a family of power-law distributions. This finding opens a door, complementary to the rank-frequency of words, to understand our communicative system in terms of language use.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Xiaoshi Zhong received his bachelor degree in computer science from Beihang University (BUAA), China, and his doctoral degree in computer science from Nanyang Technological University (NTU), Singapore. After a short period as a research fellow in NTU, he will join Beijing Institute of Technology (BIT), China, as an Assistant Professor in the School of Computer Science and Technology. His research interests mainly include data analytics, computational linguistics, and natural language processing.

Erik Cambria is the Founder of SenticNet, a Singapore-based company offering B2B sentiment analysis services, and an Associate Professor at NTU, where he also holds the appointment of Provost Chair in Computer Science and Engineering. Prior to joining NTU, he worked at Microsoft Research Asia and HP Labs India and earned his PhD through a joint programme between the University of Stirling and MIT Media Lab. Erik is recipient of many awards, e.g., the 2018 AI's 10 to Watch and the 2019 IEEE Outstanding Early Career award, and is often featured in the news, e.g., Forbes. He is Associate Editor of several journals, e.g., NEUCOM, INFFUS, KBS, IEEE CIM and IEEE Intelligent Systems (where he manages the Department of Affective Computing and Sentiment Analysis), and is involved in many international conferences as PC member, program chair, and speaker.

 


Dalla quarta di copertina

This book presents a synthetic analysis about the characteristics of time expressions and named entities, and some proposed methods for leveraging these characteristics to recognize time expressions and named entities from unstructured text. For modeling these two kinds of entities, the authors propose a rule-based method that introduces an abstracted layer between the specific words and the rules, and two learning-based methods that define a new type of tagging scheme based on the constituents of the entities, different from conventional position-based tagging schemes that cause the problem of inconsistent tag assignment. The authors also find that the length-frequency of entities follows a family of power-law distributions. This finding opens a door, complementary to the rank-frequency of words, to understand our communicative system in terms of language use.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,18 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783030789633: Time Expression and Named Entity Recognition

Edizione in evidenza

ISBN 10:  3030789632 ISBN 13:  9783030789633
Casa editrice: Springer, 2022
Brossura

Risultati della ricerca per Time Expression and Named Entity Recognition

Immagini fornite dal venditore

Xiaoshi Zhong|Erik Cambria
ISBN 10: 3030789608 ISBN 13: 9783030789602
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents a synthetic analysis about the characteristics of timexes and entitiesReports the latest findings on recognizing timexes and entities from unstructured textOpens a door to examine whether multiple joint tasks enhance each other und. Codice articolo 473131240

Contatta il venditore

Compra nuovo

EUR 127,40
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Erik Cambria
ISBN 10: 3030789608 ISBN 13: 9783030789602
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a synthetic analysis about the characteristics of time expressions and named entities, and some proposed methods for leveraging these characteristics to recognize time expressions and named entities from unstructured text. For modeling these two kinds of entities, the authors propose a rule-based method that introduces an abstracted layer between the specific words and the rules, and two learning-based methods that define a new type of tagging scheme based on the constituents of the entities, different from conventional position-based tagging schemes that cause the problem of inconsistent tag assignment. The authors also find that the length-frequency of entities follows a family of power-law distributions. This finding opens a door, complementary to the rank-frequency of words, to understand our communicative system in terms of language use. 116 pp. Englisch. Codice articolo 9783030789602

Contatta il venditore

Compra nuovo

EUR 149,79
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Zhong, Xiaoshi; Cambria, Erik
Editore: Springer, 2021
ISBN 10: 3030789608 ISBN 13: 9783030789602
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 43624474-n

Contatta il venditore

Compra nuovo

EUR 145,44
Convertire valuta
Spese di spedizione: EUR 17,18
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Zhong, Xiaoshi; Cambria, Erik
Editore: Springer, 2021
ISBN 10: 3030789608 ISBN 13: 9783030789602
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783030789602_new

Contatta il venditore

Compra nuovo

EUR 152,63
Convertire valuta
Spese di spedizione: EUR 10,34
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Erik Cambria
ISBN 10: 3030789608 ISBN 13: 9783030789602
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents a synthetic analysis about the characteristics of time expressions and named entities, and some proposed methods for leveraging these characteristics to recognize time expressions and named entities from unstructured text. For modeling these two kinds of entities, the authors propose a rule-based method that introduces an abstracted layer between the specific words and the rules, and two learning-based methods that define a new type of tagging scheme based on the constituents of the entities, different from conventional position-based tagging schemes that cause the problem of inconsistent tag assignment. The authors also find that the length-frequency of entities follows a family of power-law distributions. This finding opens a door, complementary to the rank-frequency of words, to understand our communicative system in terms of language use. Codice articolo 9783030789602

Contatta il venditore

Compra nuovo

EUR 149,79
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Erik Cambria
ISBN 10: 3030789608 ISBN 13: 9783030789602
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -This book presents a synthetic analysis about the characteristics of time expressions and named entities, and some proposed methods for leveraging these characteristics to recognize time expressions and named entities from unstructured text. For modeling these two kinds of entities, the authors propose a rule-based method that introduces an abstracted layer between the specific words and the rules, and two learning-based methods that define a new type of tagging scheme based on the constituents of the entities, different from conventional position-based tagging schemes that cause the problem of inconsistent tag assignment. The authors also find that the length-frequency of entities follows a family of power-law distributions. This finding opens a door, complementary to the rank-frequency of words, to understand our communicative system in terms of language use.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 116 pp. Englisch. Codice articolo 9783030789602

Contatta il venditore

Compra nuovo

EUR 149,79
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Zhong, Xiaoshi; Cambria, Erik
Editore: Springer, 2021
ISBN 10: 3030789608 ISBN 13: 9783030789602
Nuovo Rilegato

Da: Best Price, Torrance, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783030789602

Contatta il venditore

Compra nuovo

EUR 140,72
Convertire valuta
Spese di spedizione: EUR 25,77
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Zhong, Xiaoshi; Cambria, Erik
Editore: Springer, 2021
ISBN 10: 3030789608 ISBN 13: 9783030789602
Nuovo Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 43624474-n

Contatta il venditore

Compra nuovo

EUR 152,62
Convertire valuta
Spese di spedizione: EUR 17,26
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Zhong, Xiaoshi; Cambria, Erik
Editore: Springer, 2021
ISBN 10: 3030789608 ISBN 13: 9783030789602
Antico o usato Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 43624474

Contatta il venditore

Compra usato

EUR 165,68
Convertire valuta
Spese di spedizione: EUR 17,18
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Zhong, Xiaoshi; Cambria, Erik
Editore: Springer, 2021
ISBN 10: 3030789608 ISBN 13: 9783030789602
Antico o usato Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 43624474

Contatta il venditore

Compra usato

EUR 166,69
Convertire valuta
Spese di spedizione: EUR 17,26
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 5 copie di questo libro

Vedi tutti i risultati per questo libro