Articoli correlati a Introduction to Riemannian Manifolds: 176

Introduction to Riemannian Manifolds: 176 - Brossura

 
9783030801069: Introduction to Riemannian Manifolds: 176

Sinossi

?This textbook is designed for a one or two semester graduate course on Riemannian geometry for students who are familiar with topological and differentiable manifolds. The second edition has been adapted, expanded, and aptly retitled from Lee’s earlier book, Riemannian Manifolds: An Introduction to Curvature.  Numerous exercises and problem sets provide the student with opportunities to practice and develop skills; appendices contain a brief review of essential background material.

While demonstrating the uses of most of the main technical tools needed for a careful study of Riemannian manifolds, this text focuses on ensuring that the student develops an intimate acquaintance with the geometric meaning of curvature. The reasonably broad coverage begins with a treatment of indispensable tools for working with Riemannian metrics such as connections and geodesics. Several topics have been added, including an expanded treatment of pseudo-Riemannianmetrics, a more detailed treatment of homogeneous spaces and invariant metrics, a completely revamped treatment of comparison theory based on Riccati equations, and a handful of new local-to-global theorems, to name just a few highlights.

Reviews of the first edition:

Arguments and proofs are written down precisely and clearly. The expertise of the author is reflected in many valuable comments and remarks on the recent developments of the subjects. Serious readers would have the challenges of solving the exercises and problems. The book is probably one of the most easily accessible introductions to Riemannian geometry. (M.C. Leung, MathReview

The book’s aim is to develop tools and intuition for studying the central unifying theme in Riemannian geometry, which is the notion of curvature and its relation with topology. The main ideas of the subject, motivated as in the original papers, are introduced here in an intuitive and accessible way…The book is an excellent introduction designed for a one-semester graduate course, containing exercises and problems which encourage students to practice working with the new notions and develop skills for later use. By citing suitable references for detailed study, the reader is stimulated to inquire into further research. (C.-L. Bejan, zBMATH)

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

?John "Jack" M. Lee is a professor of mathematics at the University of Washington. Professor Lee is the author of three highly acclaimed Springer graduate textbooks : Introduction to Smooth Manifolds, (GTM 218) Introduction to Topological Manifolds (GTM 202), and Riemannian Manifolds (GTM 176). Lee's research interests include differential geometry, the Yamabe problem, existence of Einstein metrics, the constraint equations in general relativity, geometry and analysis on CR manifolds.   

Dalla quarta di copertina

This textbook is designed for a one or two semester graduate course on Riemannian geometry for students who are familiar with topological and differentiable manifolds. The second edition has been adapted, expanded, and aptly retitled from Lee’s earlier book, Riemannian Manifolds: An Introduction to Curvature. Numerous exercises and problem sets provide the student with opportunities to practice and develop skills; appendices contain a brief review of essential background material.

While demonstrating the uses of most of the main technical tools needed for a careful study of Riemannian manifolds, this text focuses on ensuring that the student develops an intimate acquaintance with the geometric meaning of curvature. The reasonably broad coverage begins with a treatment of indispensable tools for working with Riemannian metrics such as connections and geodesics. Several topics have been added, including an expanded treatment of pseudo-Riemannian metrics, a more detailed treatment of homogeneous spaces and invariant metrics, a completely revamped treatment of comparison theory based on Riccati equations, and a handful of new local-to-global theorems, to name just a few highlights.

Reviews of the first edition:

Arguments and proofs are written down precisely and clearly. The expertise of the author is reflected in many valuable comments and remarks on the recent developments of the subjects. Serious readers would have the challenges of solving the exercises and problems. The book is probably one of the most easily accessible introductions to Riemannian geometry. (M.C. Leung, MathReview)

The book’s aim is to develop tools and intuition for studying the central unifying theme in Riemannian geometry, which is the notion of curvature and its relation with topology. The main ideas of the subject, motivated as in the original papers, are introduced here in an intuitive and accessible way…The book is an excellent introduction designed for a one-semester graduate course, containing exercises and problems which encourage students to practice working with the new notions and develop skills for later use. By citing suitable references for detailed study, the reader is stimulated to inquire into further research. (C.-L. Bejan, zBMATH)

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,11 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 2,31 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783319917542: Introduction to Riemannian Manifolds: 176

Edizione in evidenza

ISBN 10:  3319917544 ISBN 13:  9783319917542
Casa editrice: Springer, 2019
Rilegato

Risultati della ricerca per Introduction to Riemannian Manifolds: 176

Immagini fornite dal venditore

John M. Lee
ISBN 10: 3030801063 ISBN 13: 9783030801069
Nuovo Paperback

Da: Rarewaves.com UK, London, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Second Edition 2018. ?This textbook is designed for a one or two semester graduate course on Riemannian geometry for students who are familiar with topological and differentiable manifolds. The second edition has been adapted, expanded, and aptly retitled from Lee's earlier book, Riemannian Manifolds: An Introduction to Curvature.  Numerous exercises and problem sets provide the student with opportunities to practice and develop skills; appendices contain a brief review of essential background material.While demonstrating the uses of most of the main technical tools needed for a careful study of Riemannian manifolds, this text focuses on ensuring that the student develops an intimate acquaintance with the geometric meaning of curvature. The reasonably broad coverage begins with a treatment of indispensable tools for working with Riemannian metrics such as connections and geodesics. Several topics have been added, including an expanded treatment of pseudo-Riemannianmetrics, a more detailed treatment of homogeneous spaces and invariant metrics, a completely revamped treatment of comparison theory based on Riccati equations, and a handful of new local-to-global theorems, to name just a few highlights.Reviews of the first edition:Arguments and proofs are written down precisely and clearly. The expertise of the author is reflected in many valuable comments and remarks on the recent developments of the subjects. Serious readers would have the challenges of solving the exercises and problems. The book is probably one of the most easily accessible introductions to Riemannian geometry. (M.C. Leung, MathReview) The book's aim is to develop tools and intuition for studying the central unifying theme in Riemannian geometry, which is the notion of curvature and its relation with topology. The main ideas of the subject, motivated as in the original papers, are introduced here in an intuitive and accessible way.The book is an excellent introduction designed for a one-semester graduate course, containing exercises and problems which encourage students to practice working with the new notions and develop skills for later use. By citing suitable references for detailed study, the reader is stimulated to inquire into further research. (C.-L. Bejan, zBMATH). Codice articolo LU-9783030801069

Contatta il venditore

Compra nuovo

EUR 36,34
Convertire valuta
Spese di spedizione: EUR 2,31
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Lee, John M.
Editore: Springer, 2021
ISBN 10: 3030801063 ISBN 13: 9783030801069
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783030801069_new

Contatta il venditore

Compra nuovo

EUR 29,55
Convertire valuta
Spese di spedizione: EUR 10,39
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

John M. Lee
ISBN 10: 3030801063 ISBN 13: 9783030801069
Nuovo Paperback

Da: Rarewaves.com USA, London, LONDO, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Second Edition 2018. ?This textbook is designed for a one or two semester graduate course on Riemannian geometry for students who are familiar with topological and differentiable manifolds. The second edition has been adapted, expanded, and aptly retitled from Lee's earlier book, Riemannian Manifolds: An Introduction to Curvature.  Numerous exercises and problem sets provide the student with opportunities to practice and develop skills; appendices contain a brief review of essential background material.While demonstrating the uses of most of the main technical tools needed for a careful study of Riemannian manifolds, this text focuses on ensuring that the student develops an intimate acquaintance with the geometric meaning of curvature. The reasonably broad coverage begins with a treatment of indispensable tools for working with Riemannian metrics such as connections and geodesics. Several topics have been added, including an expanded treatment of pseudo-Riemannianmetrics, a more detailed treatment of homogeneous spaces and invariant metrics, a completely revamped treatment of comparison theory based on Riccati equations, and a handful of new local-to-global theorems, to name just a few highlights.Reviews of the first edition:Arguments and proofs are written down precisely and clearly. The expertise of the author is reflected in many valuable comments and remarks on the recent developments of the subjects. Serious readers would have the challenges of solving the exercises and problems. The book is probably one of the most easily accessible introductions to Riemannian geometry. (M.C. Leung, MathReview) The book's aim is to develop tools and intuition for studying the central unifying theme in Riemannian geometry, which is the notion of curvature and its relation with topology. The main ideas of the subject, motivated as in the original papers, are introduced here in an intuitive and accessible way.The book is an excellent introduction designed for a one-semester graduate course, containing exercises and problems which encourage students to practice working with the new notions and develop skills for later use. By citing suitable references for detailed study, the reader is stimulated to inquire into further research. (C.-L. Bejan, zBMATH). Codice articolo LU-9783030801069

Contatta il venditore

Compra nuovo

EUR 39,92
Convertire valuta
Spese di spedizione: EUR 2,31
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Lee, John M.
Editore: Springer, 2021
ISBN 10: 3030801063 ISBN 13: 9783030801069
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 43620673-n

Contatta il venditore

Compra nuovo

EUR 27,51
Convertire valuta
Spese di spedizione: EUR 17,34
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Lee, John M.
Editore: Springer, 2021
ISBN 10: 3030801063 ISBN 13: 9783030801069
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 43620673

Contatta il venditore

Compra usato

EUR 30,50
Convertire valuta
Spese di spedizione: EUR 17,11
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Lee, John M.
Editore: Springer 2021-08, 2021
ISBN 10: 3030801063 ISBN 13: 9783030801069
Nuovo PF

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

PF. Condizione: New. Codice articolo 6666-IUK-9783030801069

Contatta il venditore

Compra nuovo

EUR 25,79
Convertire valuta
Spese di spedizione: EUR 23,11
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Lee, John M.
Editore: Springer, 2021
ISBN 10: 3030801063 ISBN 13: 9783030801069
Antico o usato Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 43620673

Contatta il venditore

Compra usato

EUR 31,87
Convertire valuta
Spese di spedizione: EUR 17,34
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Lee, John M.
Editore: Springer, 2021
ISBN 10: 3030801063 ISBN 13: 9783030801069
Nuovo Brossura

Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-308133

Contatta il venditore

Compra nuovo

EUR 50,76
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Lee, John M.
Editore: Springer, 2021
ISBN 10: 3030801063 ISBN 13: 9783030801069
Nuovo Brossura

Da: SMASS Sellers, IRVING, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Codice articolo ASNT3-308133

Contatta il venditore

Compra nuovo

EUR 52,39
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Lee
Editore: Springer, 2021
ISBN 10: 3030801063 ISBN 13: 9783030801069
Nuovo Brossura

Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-27279

Contatta il venditore

Compra nuovo

EUR 53,68
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Vedi altre 19 copie di questo libro

Vedi tutti i risultati per questo libro