<div>This volume contains articles related to the work of the Simons Collaboration “Arithmetic Geometry, Number Theory, and Computation.” The papers present mathematical results and algorithms necessary for the development of large-scale databases like the L-functions and Modular Forms Database (LMFDB). The authors aim to develop systematic tools for analyzing Diophantine properties of curves, surfaces, and abelian varieties over number fields and finite fields. The articles also explore examples important for future research.</div><div><br></div><div>Specific topics include</div><div>? algebraic varieties over finite fields</div><div>? the Chabauty-Coleman method</div><div>? modular forms</div><div>? rational points on curves of small genus</div><div>? S-unit equations and integral points.</div>
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
<div><div><b>Jennifer Balakrishnan</b> is Clare Boothe Luce Associate Professor of Mathematics and Statistics at Boston University. She holds a Ph.D. in Mathematics from the Massachusetts Institute of Technology.</div><div><br></div><div><b>Noam Elkies</b> is Professor of Mathematics at Harvard University. He holds a Ph.D. in Mathematics from Harvard University.</div><div><b><br></b></div><div><b>Brendan Hassett</b> is Professor of Mathematics at Brown University and Director of the Institute for Computational and Experimental Research in Mathematics. He holds a Ph.D. in Mathematics from Harvard University.</div><div><br></div><div><b>Bjorn Poonen </b>is Distinguished Professor in Science at the Massachusetts Institute of Technology. He holds a Ph.D. in Mathematics from the University of California at Berkeley.</div><div><b><br></b></div><div><b>Andrew Sutherland</b> is Principal Research Scientist at the Massachusetts Institute of Technology. He holds a Ph.D. in Mathematics from the Massachusetts Institute of Technology.</div><div><br></div><div><b>John Voight</b> is Professor of Mathematics at Dartmouth College. He holds a Ph.D. in Mathematics from the University of California at Berkeley.</div></div>
<div>This volume contains articles related to the work of the Simons Collaboration “Arithmetic Geometry, Number Theory, and Computation.” The papers present mathematical results and algorithms necessary for the development of large-scale databases like the L-functions and Modular Forms Database (LMFDB). The authors aim to develop systematic tools for analyzing Diophantine properties of curves, surfaces, and abelian varieties over number fields and finite fields. The articles also explore examples important for future research.</div><div><br></div><div>Specific topics include</div><div>? algebraic varieties over finite fields</div><div>? the Chabauty-Coleman method</div><div>? modular forms</div><div>? rational points on curves of small genus</div><div>? S-unit equations and integral points.</div>
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Codice articolo GESSTPMTGV
Quantità: 20 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condizione: new. Hardcover. This volume contains articles related to the work of the Simons Collaboration Arithmetic Geometry, Number Theory, and Computation. The papers present mathematical results and algorithms necessary for the development of large-scale databases like the L-functions and Modular Forms Database (LMFDB). The authors aim to develop systematic tools for analyzing Diophantine properties of curves, surfaces, and abelian varieties over number fields and finite fields. The articles also explore examples important for future research.Specific topics include algebraic varieties over finite fields the Chabauty-Coleman method modular forms rational points on curves of small genus S-unit equations and integral points. This volume contains articles related to the work of the Simons Collaboration Arithmetic Geometry, Number Theory, and Computation. The papers present mathematical results and algorithms necessary for the development of large-scale databases like the L-functions and Modular Forms Database (LMFDB). Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783030809133
Quantità: 1 disponibili
Da: Brook Bookstore, Milano, MI, Italia
Condizione: new. Codice articolo GESSTPMTGV
Quantità: 20 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020030578
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783030809133_new
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 44371831-n
Quantità: 15 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents number theory as a computational disciplineFocuses on key examples central to future researchSupports foundational work at the intersection of arithmetic geometry and data scienceJennifer Balakrishnan is Cl. Codice articolo 477957219
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 597 pages. 9.25x6.10x1.31 inches. In Stock. This item is printed on demand. Codice articolo __3030809137
Quantità: 2 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783030809133
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This volume contains articles related to the work of the Simons Collaboration 'Arithmetic Geometry, Number Theory, and Computation.' The papers present mathematical results and algorithms necessary for the development of large-scale databases like the L-functions and Modular Forms Database (LMFDB). The authorsaim to develop systematic tools for analyzing Diophantine properties of curves, surfaces, and abelian varieties over number fields and finite fields. The articles also explore examples important for future research.Specific topics include algebraic varieties over finite fields the Chabauty-Coleman method modular forms rational points on curves of small genus S-unit equations and integral points. 600 pp. Englisch. Codice articolo 9783030809133
Quantità: 2 disponibili