Articoli correlati a Federated Learning for Iot Applications

Federated Learning for Iot Applications ISBN 13: 9783030855581

Federated Learning for Iot Applications - Rilegato

 
9783030855581: Federated Learning for Iot Applications

Sinossi

This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users’ privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering. 

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Dr. Satya Prakash Yadav is currently the Associate Professor of the Department of Computer Science and Engineering, G.L. Bajaj Institute of Technology and Management (GLBITM), Greater Noida (India). He has awarded his PhD degree entitled “Fusion of Medical Images in Wavelet Domain” to Dr. A.P.J. Abdul Kalam Technical University (AKTU) (formerly UPTU).  A seasoned academician having more than 14 years of experience, he has published four books (Programming in C, Programming in C++ and Blockchain and Cryptocurrency) under I.K. International Publishing House Pvt. Ltd. Including Distributed Artificial Intelligence: A Modern Approach, Published December 18, 2020 by CRC Press. He has undergone industrial training programs during which he was involved in live projects with companies in the areas of SAP, Railway Traffic Management Systems, and Visual Vehicles Counter and Classification (used in the Metro rail network design). He is an alumnus of Netaji Subhas Institute of Technology (NSIT), Delhi University. A prolific writer, Dr. Satya Prakash Yadav has published two patents and authored many research papers in web of science indexed journals. Additionally, he has presented research papers at many conferences in the areas of Image Processing, Information retrieval, Features extraction  and Programming, such Digital Image Processing, Feature Extraction, Information Retrieval, C, Data Structure, C++, C# and Java. Also, he is a lead editor in CRC Press, Taylor and Francis Group Publisher (U.S.A), Tech Science Press (Computer Systems Science and Engineering), International Springer Publisher, Science Publishing Group,(U.S.A), and Eureka Journals , Pune ( India).

Dr. Bhoopesh Singh Bhati is presently working as an Associate Professor in Chandigarh University, Mohali. He received his Ph. D (Computer Science and Engineering) from the University School of Information Communication and Technology, Guru Gobind Singh Indraprastha University, Delhi. He has obtained his M. Tech. (Information Security) and B. Tech. (Computer Science and Engineering) from  Guru Gobind Singh Indraprastha University, Delhi, in 2009 and 2012 respectively. Dr. Bhati has worked as an Assistant Professor in Ambedkar Institute of Advanced Communication Technologies & Research Govt. of N.C.T Delhi, Geeta colony, Delhi, India.  He has published various research papers in highly reputed, SSCI/SCI/SCIE- Indexed Journals including Elsevier, Wiley, Springer, Inderscience, etc. Dr. Bhati is a recognized/ Ad-hoc reviewer of various reputed journals of Elsevier, Wiley, Springer, etc. Dr. Bhati has also participated and presented paper in Springer International Conference (RICE 2019) held in Vietnam. His current research area Intrusion Detection, Operating System, Data Science and IoT.

Dr. Dharmendra Prasad Mahato is currently an assistant professor in the Department of Computer Science and Engineering at National Institute of Technology Hamirpur, Himachal Pradesh, India. He received his AMIETE degree in Computer Science and Engineering with distinction from the Institute of Electronics and Telecommunication Engineers (IETE), India, in 2011. He received his Master of Technology in Computer Science and Engineering from Atal Bihari Vajpayee-Indian Institute of Information Technology and Management Gwalior in 2013 and Ph.D. in Computer Science and Engineering from Indian Institute of Technology (Banaras Hindu University), Varanasi, India, in January 2018. His research interests include distributed computing, artificial intelligence, operating systems, databases and modeling and simulation. He has published in journals such as Applied Soft Computing, Swarm and Evolutionary Computation, ISA Transactions, Cluster Computing, Concurrency and Computation: Practice and Experience, and conferences such as AINA, ICPP, ICDCN, and E-Science.

Dr. Sachin Kumar received the B.Tech. degree from Uttar Pradesh Technical University, Lucknow, India, in 2009, and the M.Tech. and Ph.D. degrees from Guru Gobind Singh Indraprastha University, Delhi, India, in 2011 and 2016, respectively. He is currently a Research Professor with the College of IT Engineering, Kyungpook National University, Daegu, South Korea. He has published two patents and over a hundred research articles in several peer-reviewed international journals and conferences. He serves as the session chair, organizer, and member of the program committee for various conferences, workshops, and short courses in electronics and computer related topics. He is also a frequent reviewer for more than forty scientific journals and book publishers. He is a recipient of Teaching-cum-Research Fellowship from the Government of NCT of Delhi, India, and the Brain Korea 21 Plus Research Fellowship from the National Research Foundation of South Korea. He is a member of the Indian Science Congress Association, Indian Society for Technical Education, and the Korean Institute of Electromagnetic Engineering and Science.

Dalla quarta di copertina

This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users’ privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering. 

  • ?Shows how federated learning utilizes data generated by consumer devices without intruding on privacy, allowing machine learning models to deliver personalized services;
  • Analyzes how federated learning provides a privacy-preserving mechanism to effectively leverage decentralized resources inside end-devices to train machine learning models;
  • Presents case studies that provide a tried and tested approaches to resolution of typical problems in federated learning.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,42 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 8,17 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783030855611: Federated Learning for IoT Applications

Edizione in evidenza

ISBN 10:  3030855619 ISBN 13:  9783030855611
Cucina

Risultati della ricerca per Federated Learning for Iot Applications

Foto dell'editore

YADAV, SATYA PRAKASH
Editore: Springer, 2022
ISBN 10: 3030855589 ISBN 13: 9783030855581
Nuovo Rilegato

Da: Speedyhen, London, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: NEW. Codice articolo NW9783030855581

Contatta il venditore

Compra nuovo

EUR 101,00
Convertire valuta
Spese di spedizione: EUR 8,17
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Satya Prakash Yadav
ISBN 10: 3030855589 ISBN 13: 9783030855581
Nuovo Rilegato

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GB-9783030855581

Contatta il venditore

Compra nuovo

EUR 113,66
Convertire valuta
Spese di spedizione: EUR 6,15
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Satya Prakash Yadav
ISBN 10: 3030855589 ISBN 13: 9783030855581
Nuovo Rilegato

Da: PBShop.store US, Wood Dale, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GB-9783030855581

Contatta il venditore

Compra nuovo

EUR 119,71
Convertire valuta
Spese di spedizione: EUR 1,23
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yadav, Satya Prakash (EDT); Bhati, Bhoopesh Singh (EDT); Mahato, Dharmendra Prasad (EDT); Kumar, Sachin (EDT)
Editore: Springer, 2022
ISBN 10: 3030855589 ISBN 13: 9783030855581
Nuovo Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44131389-n

Contatta il venditore

Compra nuovo

EUR 113,65
Convertire valuta
Spese di spedizione: EUR 17,53
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yadav, Satya Prakash (EDT); Bhati, Bhoopesh Singh (EDT); Mahato, Dharmendra Prasad (EDT); Kumar, Sachin (EDT)
Editore: Springer, 2022
ISBN 10: 3030855589 ISBN 13: 9783030855581
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44131389-n

Contatta il venditore

Compra nuovo

EUR 117,33
Convertire valuta
Spese di spedizione: EUR 17,42
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2022
ISBN 10: 3030855589 ISBN 13: 9783030855581
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783030855581_new

Contatta il venditore

Compra nuovo

EUR 128,80
Convertire valuta
Spese di spedizione: EUR 10,51
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Satya Prakash Yadav
ISBN 10: 3030855589 ISBN 13: 9783030855581
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users' privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering. 276 pp. Englisch. Codice articolo 9783030855581

Contatta il venditore

Compra nuovo

EUR 128,39
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

ISBN 10: 3030855589 ISBN 13: 9783030855581
Nuovo Rilegato

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy.This book presents how federated learning helps to understand and learn from user activity . Codice articolo 491259329

Contatta il venditore

Compra nuovo

EUR 131,83
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Satya Prakash Yadav
ISBN 10: 3030855589 ISBN 13: 9783030855581
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users' privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering. Codice articolo 9783030855581

Contatta il venditore

Compra nuovo

EUR 128,39
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Satya Prakash Yadav
ISBN 10: 3030855589 ISBN 13: 9783030855581
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users¿ privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 276 pp. Englisch. Codice articolo 9783030855581

Contatta il venditore

Compra nuovo

EUR 128,39
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 8 copie di questo libro

Vedi tutti i risultati per questo libro