This textbook provides a compact but comprehensive treatment that provides analytical and design steps to recurrent neural networks from scratch. It provides a treatment of the general recurrent neural networks with principled methods for training that render the (generalized) backpropagation through time (BPTT). This author focuses on the basics and nuances of recurrent neural networks, providing technical and principled treatment of the subject, with a view toward using coding and deep learning computational frameworks, e.g., Python and Tensorflow-Keras. Recurrent neural networks are treated holistically from simple to gated architectures, adopting the technical machinery of adaptive non-convex optimization with dynamic constraints to leverage its systematic power in organizing the learning and training processes. This permits the flow of concepts and techniques that provide grounded support for design and training choices. The author’s approach enables strategic co-trainingof output layers, using supervised learning, and hidden layers, using unsupervised learning, to generate more efficient internal representations and accuracy performance. As a result, readers will be enabled to create designs tailoring proficient procedures for recurrent neural networks in their targeted applications.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Dr. Salem’s current research interests include: Neural Networks and Learning Systems, Blind Signal Deconvolution and Extraction, Dynamical Systems and Chaos, Integrated CMOS Sensing and Processing. He was the Chairman of the IEEE Technical Committee on Real-Time Control Computing and Signal Processing (1994–1996). He was the Chairman of the CAS Technical Committee on Neural Systems and Their Applications (1997–1998). He served on the IEEE Neural Network Council (1999–2000), and was the first Vice President of the IEEE Neural Network Council for Technical Activities (1999–2001). He was the Guest Co-Editor of the IEEE-CAS Special Issue on Bifurcations and Chaos in Circuits and Systems July 1988 (with T. Matsumoto), the Special Issue on Micro-Electronic Hardware Implementation of Soft Computing: Neural and Fuzzy Networks with Learning, Journal of Computers and Electrical Engineering, July 1999 (with T. Yamakawa), and the Special Issue on Digital and Analog Arrays, in the Journal of Circuits, Systems, and Computers, August 1999 (with M. Ahmadi). He was the recipient of the IEEE CAS Golden Jubilee Award (1999), the IEEE Third Millennium Award (2000), and The CAS Darlington Best Paper Award (2001).With a team of students, he also received the U.S. Semiconductor Research Corporation (SRC) Phase II Finalist Award (2000). He was a Distinguished Lecturer of the IEEE CAS Society in 2000–2001. He was an Associate Editor and Guest Editor for numerous IEEE and other transactions including the IEEE Circuits and Systems, IEEE Neural Networks, the Journal of Circuits, Systems, and Computers, and the Journal of Computer and Electrical Engineering. He was the Chairman of the Engineering Foundation Conference on Qualitative Methods for Nonlinear Dynamics. He served in several capacities in several conferences including the General Chair of the IEEE Midwest Symposium on Circuits and Systems in Lansing, MI, in 2000 and also in 2021.
He was a Visiting Professor at UC, Berkeley (1983), the California Institute of Technology, Pasadena (1992), and the University of Minnesota, Twin Cities (1993). He joined MSU in 1985 and has been a Professor since1991. He has worked and consulted for several companies including General Motors, Ford, Smith’s Industries, Intersignal, IC Tech Inc., and Clarity LLC. He has authored more than 250 technical papers, and co-edited the textbook (Dynamical Systems Approaches to Nonlinear Problems in Circuits and Systems, (SIAM, 1988). He is a co-inventor of more than 14 patents on adaptive nonlinear signal processing, neural networks, and sensors.
This textbook provides a compact but comprehensive treatment that provides analytical and design steps to recurrent neural networks from scratch. It provides a treatment of the general recurrent neural networks with principled methods for training that render the (generalized) backpropagation through time (BPTT). This author focuses on the basics and nuances of recurrent neural networks, providing technical and principled treatment of the subject, with a view toward using coding and deep learning computational frameworks, e.g., Python and Tensorflow-Keras. Recurrent neural networks are treated holistically from simple to gated architectures, adopting the technical machinery of adaptive non-convex optimization with dynamic constraints to leverage its systematic power in organizing the learning and training processes. This permits the flow of concepts and techniques that provide grounded support for design and training choices. The author’s approach enables strategic co-training ofoutput layers, using supervised learning, and hidden layers, using unsupervised learning, to generate more efficient internal representations and accuracy performance. As a result, readers will be enabled to create designs tailoring proficient procedures for recurrent neural networks in their targeted applications.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 6,90 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Buchpark, Trebbin, Germania
Condizione: Hervorragend. Zustand: Hervorragend | Seiten: 144 | Sprache: Englisch | Produktart: Bücher. Codice articolo 38370305/1
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This textbook provides a compact but comprehensive treatment that provides analytical and design steps to recurrent neural networks from scratch.This textbook provides a compact but comprehensive treatment that provides analytical and design steps to. Codice articolo 510444981
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo S0-9783030899288
Quantità: 10 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook provides a compact but comprehensive treatment that provides analytical and design steps to recurrent neural networks from scratch. It provides a treatment of the general recurrent neural networks with principled methods for training that render the (generalized) backpropagation through time (BPTT). This author focuses on the basics and nuances of recurrent neural networks, providing technical and principled treatment of the subject, with a view toward using coding and deep learning computational frameworks, e.g., Python and Tensorflow-Keras. Recurrent neural networks are treated holistically from simple to gated architectures, adopting the technical machinery of adaptive non-convex optimization with dynamic constraints to leverage its systematic power in organizing the learning and training processes. This permits the flow of concepts and techniques that provide grounded support for design and training choices. The author's approach enables strategic co-trainingof output layers, using supervised learning, and hidden layers, using unsupervised learning, to generate more efficient internal representations and accuracy performance. As a result, readers will be enabled to create designs tailoring proficient procedures for recurrent neural networks in their targeted applications. 144 pp. Englisch. Codice articolo 9783030899288
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783030899288_new
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 141 pages. 9.25x6.10x0.59 inches. In Stock. This item is printed on demand. Codice articolo __3030899284
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook provides a compact but comprehensive treatment that provides analytical and design steps to recurrent neural networks from scratch. It provides a treatment of the general recurrent neural networks with principled methods for training that render the (generalized) backpropagation through time (BPTT). This author focuses on the basics and nuances of recurrent neural networks, providing technical and principled treatment of the subject, with a view toward using coding and deep learning computational frameworks, e.g., Python and Tensorflow-Keras. Recurrent neural networks are treated holistically from simple to gated architectures, adopting the technical machinery of adaptive non-convex optimization with dynamic constraints to leverage its systematic power in organizing the learning and training processes. This permits the flow of concepts and techniques that provide grounded support for design and training choices. The author's approach enables strategic co-trainingof output layers, using supervised learning, and hidden layers, using unsupervised learning, to generate more efficient internal representations and accuracy performance. As a result, readers will be enabled to create designs tailoring proficient procedures for recurrent neural networks in their targeted applications. Codice articolo 9783030899288
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -This textbook provides a compact but comprehensive treatment that provides analytical and design steps to recurrent neural networks from scratch. It provides a treatment of the general recurrent neural networks with principled methods for training that render the (generalized) backpropagation through time (BPTT). This author focuses on the basics and nuances of recurrent neural networks, providing technical and principled treatment of the subject, with a view toward using coding and deep learning computational frameworks, e.g., Python and Tensorflow-Keras. Recurrent neural networks are treated holistically from simple to gated architectures, adopting the technical machinery of adaptive non-convex optimization with dynamic constraints to leverage its systematic power in organizing the learning and training processes. This permits the flow of concepts and techniques that provide grounded support for design and training choices. The author¿s approach enables strategic co-trainingof output layers, using supervised learning, and hidden layers, using unsupervised learning, to generate more efficient internal representations and accuracy performance. As a result, readers will be enabled to create designs tailoring proficient procedures for recurrent neural networks in their targeted applications.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 144 pp. Englisch. Codice articolo 9783030899288
Quantità: 2 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 44056648-n
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 44056648-n
Quantità: Più di 20 disponibili