Articoli correlati a Data Assimilation Fundamentals: A Unified Formulation...

Data Assimilation Fundamentals: A Unified Formulation of the State and Parameter Estimation Problem - Rilegato

 
9783030967086: Data Assimilation Fundamentals: A Unified Formulation of the State and Parameter Estimation Problem

Sinossi

This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the "top-down" derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve. The book's top-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the "ensemble randomized likelihood" (EnRML) methods? Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother? Would you like to understand how a particle flow is related to a particle filter? In this book, we will provide clear answers to several such questions. The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples. It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation.


Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Geir Evensen gained his PhD in Mathematics at the University of Bergen, Norway. His extensive experiences include data assimilation in ocean and weather models, as well as ensemble-based history matching within petroleum-reservoir models. He has initiated and led several international research projects from an initial idea to operational implementation in various disciplines. Since 2016, he has worked as a Chief scientist at the International Research Institute of Stavanger (IRIS), which from 2018, merged into NORCE. He teaches data assimilation and its applications in various courses and summer schools. He also holds a secondary position at the Nansen Environmental and Remote Sensing Center in Bergen, Norway.

Femke Vossepoel gained her PhD in Aerospace Engineering at Delft University of Technology, The Netherlands. Her research focuses on the use of data assimilation in numerical models of subsurface flow and mechanics to estimate the effects of subsurface activities and their uncertainties and associated risks. Applications of her current research include subsidence and induced seismicity, slope stability, and flooding risk. She works as an Associate Professor, Department of Geoscience and Engineering, Delft University of Technology, The Netherlands. She teaches on statistics and data assimilation in various international summer schools and courses.

Peter Jan van Leeuwen gained his PhD from the Delft University of Technology, The Netherlands. His research focuses on the development of advanced data-assimilation methods and causal discovery methods for high-dimensional highly nonlinear systems, and applying these methods for a better understanding of geophysical fluids, especially atmosphere and ocean. He joined the University of Reading,UK, as Professor in Data Assimilation in 2009, and is also a Professor in Data Assimilation and Oceanography at Colorado State University, USA, since 2018. In 2016 we won the prestigious Advanced Investigator grant from the European Research Council, the largest personal award in the EU. The teaches many courses at universities and summerschools on Data Assimilation, Causal Discovery, Physical Oceanography, Statistical mechanics for the Geosciences, and Remote Sensing.


Dalla quarta di copertina

This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the "top-down" derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve. The book's top-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the "ensemble randomized likelihood" (EnRML) methods? Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother? Would you like to understand how a particle flow is related to a particle filter? In this book, we will provide clear answers to several such questions. The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples. It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation.


Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783030967116: Data Assimilation Fundamentals: A Unified Formulation of the State and Parameter Estimation Problem

Edizione in evidenza

ISBN 10:  3030967115 ISBN 13:  9783030967116
Casa editrice: Springer, 2023
Brossura

Risultati della ricerca per Data Assimilation Fundamentals: A Unified Formulation...

Immagini fornite dal venditore

Geir Evensen|Femke C. Vossepoel|Peter Jan van Leeuwen
ISBN 10: 3030967085 ISBN 13: 9783030967086
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Derives data-assimilation methods using a top-down approachPresents unified data-assimilation formulation Derivation applicable to both state- and parameter estimationProvides a deep understanding of data-assimilation methods and the. Codice articolo 560621127

Contatta il venditore

Compra nuovo

EUR 47,23
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Femke C. Vossepoel
ISBN 10: 3030967085 ISBN 13: 9783030967086
Nuovo Rilegato

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo S0-9783030967086

Contatta il venditore

Compra nuovo

EUR 55,72
Convertire valuta
Spese di spedizione: EUR 6,09
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Geir Evensen
ISBN 10: 3030967085 ISBN 13: 9783030967086
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the 'top-down' derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve.The book'stop-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the 'ensemble randomized likelihood' (EnRML) methods Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother Would you like to understand how a particle flow is related to a particle filter In this book, we will provide clear answers to several such questions.The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples.It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation. 268 pp. Englisch. Codice articolo 9783030967086

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Evensen, Geir (Author)/ Vossepoel, Femke C. (Author)/ van Leeuwen, Peter Jan (Author)
Editore: Springer, 2022
ISBN 10: 3030967085 ISBN 13: 9783030967086
Nuovo Rilegato

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Brand New. 264 pages. 9.25x6.10x0.75 inches. In Stock. Codice articolo __3030967085

Contatta il venditore

Compra nuovo

EUR 53,70
Convertire valuta
Spese di spedizione: EUR 11,59
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Geir Evensen
ISBN 10: 3030967085 ISBN 13: 9783030967086
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the 'top-down' derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve.The book'stop-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the 'ensemble randomized likelihood' (EnRML) methods Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother Would you like to understand how a particle flow is related to a particle filter In this book, we will provide clear answers to several such questions.The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples.It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation. Codice articolo 9783030967086

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Geir Evensen
ISBN 10: 3030967085 ISBN 13: 9783030967086
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the 'top-down' derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve. The book's top-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the 'ensemble randomized likelihood' (EnRML) methods Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother Would you like to understand how a particle flow is related to a particle filter In this book, we will provide clear answers to several such questions. The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples. It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 268 pp. Englisch. Codice articolo 9783030967086

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Evensen, Geir; Vossepoel, Femke C.; Van Leeuwen, Peter Jan
Editore: Springer, 2022
ISBN 10: 3030967085 ISBN 13: 9783030967086
Nuovo Rilegato

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26395751111

Contatta il venditore

Compra nuovo

EUR 71,44
Convertire valuta
Spese di spedizione: EUR 7,64
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Evensen, Geir; Vossepoel, Femke C.; Van Leeuwen, Peter Jan
Editore: Springer, 2022
ISBN 10: 3030967085 ISBN 13: 9783030967086
Nuovo Rilegato
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo 400625944

Contatta il venditore

Compra nuovo

EUR 72,00
Convertire valuta
Spese di spedizione: EUR 10,25
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Evensen, Geir; Vossepoel, Femke C.; Van Leeuwen, Peter Jan
Editore: Springer, 2022
ISBN 10: 3030967085 ISBN 13: 9783030967086
Nuovo Rilegato
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND. Codice articolo 18395751117

Contatta il venditore

Compra nuovo

EUR 76,33
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello