Articoli correlati a Transfer Learning for Multiagent Reinforcement Learning...

Transfer Learning for Multiagent Reinforcement Learning Systems - Brossura

 
9783031004636: Transfer Learning for Multiagent Reinforcement Learning Systems

Sinossi

Learning to solve sequential decision-making tasks is difficult. Humans take years exploring the environment essentially in a random way until they are able to reason, solve difficult tasks, and collaborate with other humans towards a common goal. Artificial Intelligent agents are like humans in this aspect. Reinforcement Learning (RL) is a well-known technique to train autonomous agents through interactions with the environment. Unfortunately, the learning process has a high sample complexity to infer an effective actuation policy, especially when multiple agents are simultaneously actuating in the environment.

However, previous knowledge can be leveraged to accelerate learning and enable solving harder tasks. In the same way humans build skills and reuse them by relating different tasks, RL agents might reuse knowledge from previously solved tasks and from the exchange of knowledge with other agents in the environment. In fact, virtually all of the most challenging tasks currently solved by RL rely on embedded knowledge reuse techniques, such as Imitation Learning, Learning from Demonstration, and Curriculum Learning.

This book surveys the literature on knowledge reuse in multiagent RL. The authors define a unifying taxonomy of state-of-the-art solutions for reusing knowledge, providing a comprehensive discussion of recent progress in the area. In this book, readers will find a comprehensive discussion of the many ways in which knowledge can be reused in multiagent sequential decision-making tasks, as well as in which scenarios each of the approaches is more efficient. The authors also provide their view of the current low-hanging fruit developments of the area, as well as the still-open big questions that could result in breakthrough developments. Finally, the book provides resources to researchers who intend to join this area or leverage those techniques, including a list of conferences, journals, and implementation tools.

This book will be useful for a wide audience; and will hopefully promote new dialogues across communities and novel developments in the area.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Felipe Leno da Silva (Leno) holds a Ph.D. (2019) from the University of São Paulo, Brazil. He is currently a Postdoc Researcher at the Advanced Institute for AI, where he helped organe one of the first Brazilian AI residency programs. He has been actively researching knowledge reuse for multiagent RL since the start of his Ph.D. and is a firm believer that RL will bridge the gap between virtual agents and the physical real world. Leno enjoys serving the AI community in oft-neglected yet important roles. He has been part of the Program Committees of most of the major AI conferences and has organized multiple workshops, such as the Adaptive and Learning Agents (ALA) and the Scaling-Up Reinforcement Learning (SURL) workshop series. Leno is a strong advocate for the inclusion of minorities in the AI community and has been involved in multiple iterations of the Latinx in AI workshop at NeurIPS.Anna Helena Reali Costa (Anna Reali) is Full Professor at Universidade de Sã o Paulo (USP), Brazil. She received her Ph.D. at USP, investigated robot vision as a research scientist at the University of Karlsruhe, and was a guest researcher at Carnegie Mellon University, working in the integration of learning, planning, and execution in mobile robot teams. She is the Director of the Data Science Center (C2D), a partnership between USP and the Itau-Unibanco bank, and a member of the Center for Artificial Intelligence (C4AI), a partnership between USP, IBM, and FAPESP. Her scientific contributions lie in AI and Machine Learning, in particular RL; her long-term research objective is to create autonomous, ethical, and robust agents that can learn to interact in complex and dynamic environments, aiming at the well-being of human beings.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,11 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

Risultati della ricerca per Transfer Learning for Multiagent Reinforcement Learning...

Immagini fornite dal venditore

Leno da Silva, Felipe|Costa, Anna Helena Reali
ISBN 10: 3031004639 ISBN 13: 9783031004636
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Learning to solve sequential decision-making tasks is difficult. Humans take years exploring the environment essentially in a random way until they are able to reason, solve difficult tasks, and collaborate with other humans towards a common goal. Codice articolo 608128888

Contatta il venditore

Compra nuovo

EUR 55,78
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Anna Helena Reali Costa
ISBN 10: 3031004639 ISBN 13: 9783031004636
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Learning to solve sequential decision-making tasks is difficult. Humans take years exploring the environment essentially in a random way until they are able to reason, solve difficult tasks, and collaborate with other humans towards a common goal. Artificial Intelligent agents are like humans in this aspect. Reinforcement Learning (RL) is a well-known technique to train autonomous agents through interactions with the environment. Unfortunately, the learning process has a high sample complexity to infer an effective actuation policy, especially when multiple agents are simultaneously actuating in the environment.However, previous knowledge can be leveraged to accelerate learning and enable solving harder tasks. In the same way humans build skills and reuse them by relating different tasks, RL agents might reuse knowledge from previously solved tasks and from the exchange of knowledge with other agents in the environment. In fact, virtually all of the most challenging tasks currently solved by RL rely on embedded knowledge reuse techniques, such as Imitation Learning, Learning from Demonstration, and Curriculum Learning.This book surveys the literature on knowledge reuse in multiagent RL. The authors define a unifying taxonomy of state-of-the-art solutions for reusing knowledge, providing a comprehensive discussion of recent progress in the area. In this book, readers will find a comprehensive discussion of the many ways in which knowledge can be reused in multiagent sequential decision-making tasks, as well as in which scenarios each of the approaches is more efficient. The authors also provide their view of the current low-hanging fruit developments of the area, as well as the still-open big questions that could result in breakthrough developments. Finally, the book provides resources to researchers who intend to join this area or leverage those techniques, including a list of conferences, journals, and implementation tools.This book will be useful for a wide audience; and will hopefully promote new dialogues across communities and novel developments in the area. 132 pp. Englisch. Codice articolo 9783031004636

Contatta il venditore

Compra nuovo

EUR 64,19
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Leno Da Silva, Felipe; Costa, Anna Helena Reali
Editore: Springer, 2021
ISBN 10: 3031004639 ISBN 13: 9783031004636
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In English. Codice articolo ria9783031004636_new

Contatta il venditore

Compra nuovo

EUR 66,70
Convertire valuta
Spese di spedizione: EUR 10,39
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Da Silva, Felipe Felipe Leno; Costa, Anna Helena Reali
Editore: Springer, 2021
ISBN 10: 3031004639 ISBN 13: 9783031004636
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44569090-n

Contatta il venditore

Compra nuovo

EUR 61,90
Convertire valuta
Spese di spedizione: EUR 17,11
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Anna Helena Reali Costa
ISBN 10: 3031004639 ISBN 13: 9783031004636
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Learning to solve sequential decision-making tasks is difficult. Humans take years exploring the environment essentially in a random way until they are able to reason, solve difficult tasks, and collaborate with other humans towards a common goal. Artificial Intelligent agents are like humans in this aspect. Reinforcement Learning (RL) is a well-known technique to train autonomous agents through interactions with the environment. Unfortunately, the learning process has a high sample complexity to infer an effective actuation policy, especially when multiple agents are simultaneously actuating in the environment.However, previous knowledge can be leveraged to accelerate learning and enable solving harder tasks. In the same way humans build skills and reuse them by relating different tasks, RL agents might reuse knowledge from previously solved tasks and from the exchange of knowledge with other agents in the environment. In fact, virtually all of the most challenging tasks currently solved by RL rely on embedded knowledge reuse techniques, such as Imitation Learning, Learning from Demonstration, and Curriculum Learning.This book surveys the literature on knowledge reuse in multiagent RL. The authors define a unifying taxonomy of state-of-the-art solutions for reusing knowledge, providing a comprehensive discussion of recent progress in the area. In this book, readers will find a comprehensive discussion of the many ways in which knowledge can be reused in multiagent sequential decision-making tasks, as well as in which scenarios each of the approaches is more efficient. The authors also provide their view of the current low-hanging fruit developments of the area, as well as the still-open big questions that could result in breakthrough developments. Finally, the book provides resources to researchers who intend to join this area or leverage those techniques, including a list of conferences, journals, and implementation tools.This book will be useful for a wide audience; and will hopefully promote new dialogues across communities and novel developments in the area. Codice articolo 9783031004636

Contatta il venditore

Compra nuovo

EUR 64,19
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Anna Helena Reali Costa
ISBN 10: 3031004639 ISBN 13: 9783031004636
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Learning to solve sequential decision-making tasks is difficult. Humans take years exploring the environment essentially in a random way until they are able to reason, solve difficult tasks, and collaborate with other humans towards a common goal. Artificial Intelligent agents are like humans in this aspect. Reinforcement Learning (RL) is a well-known technique to train autonomous agents through interactions with the environment. Unfortunately, the learning process has a high sample complexity to infer an effective actuation policy, especially when multiple agents are simultaneously actuating in the environment.However, previous knowledge can be leveraged to accelerate learning and enable solving harder tasks. In the same way humans build skills and reuse them by relating different tasks, RL agents might reuse knowledge from previously solved tasks and from the exchange of knowledge with other agents in the environment. In fact, virtually all of the most challenging tasks currently solved by RL rely on embedded knowledge reuse techniques, such as Imitation Learning, Learning from Demonstration, and Curriculum Learning.This book surveys the literature on knowledge reuse in multiagent RL. The authors define a unifying taxonomy of state-of-the-art solutions for reusing knowledge, providing a comprehensive discussion of recent progress in the area. In this book, readers will find a comprehensive discussion of the many ways in which knowledge can be reused in multiagent sequential decision-making tasks, as well as in which scenarios each of the approaches is more efficient. The authors also provide their view of the current low-hanging fruit developments of the area, as well as the still-open big questions that could result in breakthrough developments. Finally, the book provides resources to researchers who intend to join this area or leverage those techniques, including a list of conferences, journals, and implementation tools.This book will be useful for a wide audience; and will hopefully promote new dialogues across communities and novel developments in the area.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 132 pp. Englisch. Codice articolo 9783031004636

Contatta il venditore

Compra nuovo

EUR 64,19
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Da Silva, Felipe Felipe Leno; Costa, Anna Helena Reali
Editore: Springer, 2021
ISBN 10: 3031004639 ISBN 13: 9783031004636
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44569090-n

Contatta il venditore

Compra nuovo

EUR 65,70
Convertire valuta
Spese di spedizione: EUR 17,34
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Leno Da Silva, Felipe; Costa, Anna Helena Reali
Editore: Springer, 2021
ISBN 10: 3031004639 ISBN 13: 9783031004636
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9783031004636

Contatta il venditore

Compra nuovo

EUR 76,69
Convertire valuta
Spese di spedizione: EUR 7,70
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Leno Da Silva, Felipe; Costa, Anna Helena Reali
Editore: Springer, 2021
ISBN 10: 3031004639 ISBN 13: 9783031004636
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 1st edition NO-PA16APR2015-KAP. Codice articolo 26395061422

Contatta il venditore

Compra nuovo

EUR 77,68
Convertire valuta
Spese di spedizione: EUR 7,70
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Leno da Silva, Felipe
Editore: Springer 2021-05, 2021
ISBN 10: 3031004639 ISBN 13: 9783031004636
Nuovo PF

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

PF. Condizione: New. Codice articolo 6666-IUK-9783031004636

Contatta il venditore

Compra nuovo

EUR 62,74
Convertire valuta
Spese di spedizione: EUR 23,11
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Vedi altre 6 copie di questo libro

Vedi tutti i risultati per questo libro