This volume presents extensive research devoted to a broad spectrum of mathematics with emphasis on interdisciplinary aspects of Optimization and Probability. Chapters also emphasize applications to Data Science, a timely field with a high impact in our modern society. The discussion presents modern, state-of-the-art, research results and advances in areas including non-convex optimization, decentralized distributed convex optimization, topics on surrogate-based reduced dimension global optimization in process systems engineering, the projection of a point onto a convex set, optimal sampling for learning sparse approximations in high dimensions, the split feasibility problem, higher order embeddings, codifferentials and quasidifferentials of the expectation of nonsmooth random integrands, adjoint circuit chains associated with a random walk, analysis of the trade-off between sample size and precision in truncated ordinary least squares, spatial deep learning, efficient location-based tracking for IoT devices using compressive sensing and machine learning techniques, and nonsmooth mathematical programs with vanishing constraints in Banach spaces.
The book is a valuable source for graduate students as well as researchers working on Optimization, Probability and their various interconnections with a variety of other areas.
Chapter 12 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
?Ashkan Nikeghbali is currently Chair of the department of quantitative finance at the University of Zürich. His fields of research include finance mathematics, number theory, random matrices, and stochastic processes. Since 2016 Prof. Nikeghbali has been a member of the Scientific Advisory Board of swissQuant and a member of the Advisory Board of EVMTech.
This volume presents extensive research devoted to a broad spectrum of mathematics with emphasis on interdisciplinary aspects of Optimization and Probability. Chapters also emphasize applications to Data Science, a timely field with a high impact in our modern society. The discussion presents modern, state-of-the-art, research results and advances in areas including non-convex optimization, decentralized distributed convex optimization, topics on surrogate-based reduced dimension global optimization in process systems engineering, the projection of a point onto a convex set, optimal sampling for learning sparse approximations in high dimensions, the split feasibility problem, higher order embeddings, codifferentials and quasidifferentials of the expectation of nonsmooth random integrands, adjoint circuit chains associated with a random walk, analysis of the trade-off between sample size and precision in truncated ordinary least squares, spatial deep learning, efficient location-based tracking for IoT devices using compressive sensing and machine learning techniques, and nonsmooth mathematical programs with vanishing constraints in Banach spaces.
The book is a valuable source for graduate students as well as researchers working on Optimization, Probability and their various interconnections with a variety of other areas.
Chapter 12 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Buchpark, Trebbin, Germania
Condizione: Hervorragend. Zustand: Hervorragend | Seiten: 428 | Sprache: Englisch | Produktart: Bücher. Codice articolo 42047296/1
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This volume presents extensive research devoted to a broad spectrum of mathematics with emphasis on interdisciplinary aspects of Optimization and Probability. Chapters also emphasize applications to Data Science, a timely field with a high impact in our mod. Codice articolo 927315358
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 428 pp. Englisch. Codice articolo 9783031008344
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering. Codice articolo 9783031008344
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 428 pp. Englisch. Codice articolo 9783031008344
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783031008344_new
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783031008344
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 428. Codice articolo 397860259
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 428. Codice articolo 18398549622
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 425 pages. 9.25x6.10x0.87 inches. In Stock. Codice articolo x-3031008340
Quantità: 2 disponibili