In order to sustain Moore's Law-based device scaling, principal attention has focused on toward device architectural innovations for improved device performance as per ITRS projections for technology nodes up to 10 nm. Efficient integration of lower substrate temperatures (
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Nabil Shovon Ashraf was born in Dhaka, Bangladesh, in 1974. He obtained his Bachelor's degree in Electrical Engineering (EE) from Indian Institute of Technology Kanpur, India, in 1997, Master's degree in EE from University of Central Florida, Orlando, Florida, in 1999, and Doctorate degree in EE from Arizona State University, Tempe, Arizona, in 2011. He was a post doctoral researcher in the department of electrical engineering of Arizona State University from 2011-2014. He was employed as design engineer in RF Monolithics Inc., a surface acoustic wave (SAW) based filter design company in Dallas, Texas, from 1999-2001. From 2003 till 2006 he served on the faculty of the department of Electrical & Electronic Engineering of Islamic University of Technology, Gazipur, Bangladesh, as Assistant Professor. In fall 2014, he became Assistant Professor in the department of Electrical and Computer Engineering (ECE) of North South University, Dhaka, Bangladesh. He has been listed in Marquis Who's Who in America in 2016 (70th platinum edition) and also in 2015 (69th edition). Dr. Ashraf has, to date, published six peer reviewed journal papers (two IEEE EDS society) and around 14 conference papers (three IEEE EDS society). He has also contributed to two book chapters on interface trap-induced reliability aspects (threshold voltage fluctuations) of nanoscale devices. He specializes in the area of device physics and modeling analysis of scaled devices for enabling improved device performance at the scaled node of current MOSFET device architectures. Shawon Alam successfully completed his Bachelor's of Science in Electrical and Electronic Engineering from North South University in August 2015, and has performed research (2014–2015) concentrating on nanoscale nMOSFET device modeling on threshold voltage with the impact of temperature (100K-500K). Later, he joined an internship program at a multinational telecommunications company for a period of four months. He was involved with many extra-curricular and co-curricular activities like sports, social service, and a teaching assistantship during his graduate program. Presently, he is working as a network engineer in a renowned organization involved with international internet gateway (IIG) as well as internet service provider (ISP). In the future, he is willing to do further research on the MOSFET device. Mohaiminul Alam, a distinguished graduate with a Bachelor's of Science in Electrical and Electronic Engineering from North South University, has performed research (2014-2015) concentrating on CMOS device modeling, projecting the impact of temperature (100K–500K) on threshold voltage. Later, he joined an internship program at a telecommunications company. He is currently working as a project system and development engineer in an organization involved with the research and development program of solar products and solar solutions.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Nabil Shovon Ashraf was born in Dhaka, Bangladesh, in 1974. He obtained his Bachelor s degree in Electrical Engineering (EE) from Indian Institute of Technology Kanpur, India, in 1997, Master s degree in EE from University of Central Florida, Orlando, Flori. Codice articolo 608129205
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In order to sustain Moore's Law-based device scaling, principal attention has focused on toward device architectural innovations for improved device performance as per ITRS projections for technology nodes up to 10 nm. Efficient integration of lower substrate temperatures ( 84 pp. Englisch. Codice articolo 9783031008993
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - In order to sustain Moore's Law-based device scaling, principal attention has focused on toward device architectural innovations for improved device performance as per ITRS projections for technology nodes up to 10 nm. Efficient integration of lower substrate temperatures (. Codice articolo 9783031008993
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -In order to sustain Moore's Law-based device scaling, principal attention has focused on toward device architectural innovations for improved device performance as per ITRS projections for technology nodes up to 10 nm. Efficient integration of lower substrate temperatures (Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 84 pp. Englisch. Codice articolo 9783031008993
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783031008993_new
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. 1st edition NO-PA16APR2015-KAP. Codice articolo 26394683732
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 401726091
Quantità: 4 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9783031008993
Quantità: 10 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18394683742
Quantità: 4 disponibili