Articoli correlati a Image Understanding using Sparse Representations

Image Understanding using Sparse Representations - Brossura

 
9783031011221: Image Understanding using Sparse Representations

Sinossi

Image understanding has been playing an increasingly crucial role in several inverse problems and computer vision. Sparse models form an important component in image understanding, since they emulate the activity of neural receptors in the primary visual cortex of the human brain. Sparse methods have been utilized in several learning problems because of their ability to provide parsimonious, interpretable, and efficient models. Exploiting the sparsity of natural signals has led to advances in several application areas including image compression, denoising, inpainting, compressed sensing, blind source separation, super-resolution, and classification. The primary goal of this book is to present the theory and algorithmic considerations in using sparse models for image understanding and computer vision applications. To this end, algorithms for obtaining sparse representations and their performance guarantees are discussed in the initial chapters. Furthermore, approaches for designing overcomplete, data-adapted dictionaries to model natural images are described. The development of theory behind dictionary learning involves exploring its connection to unsupervised clustering and analyzing its generalization characteristics using principles from statistical learning theory. An exciting application area that has benefited extensively from the theory of sparse representations is compressed sensing of image and video data. Theory and algorithms pertinent to measurement design, recovery, and model-based compressed sensing are presented. The paradigm of sparse models, when suitably integrated with powerful machine learning frameworks, can lead to advances in computer vision applications such as object recognition, clustering, segmentation, and activity recognition. Frameworks that enhance the performance of sparse models in such applications by imposing constraints based on the prior discriminatory information and the underlying geometrical structure, and kernelizing the sparse coding and dictionary learning methods are presented. In addition to presenting theoretical fundamentals in sparse learning, this book provides a platform for interested readers to explore the vastly growing application domains of sparse representations.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Jayaraman J. Thiagarajan received his M.S. and Ph.D. degrees in Electrical Engineering from Arizona State University. He is currently a postdoctoral researcher in the Center for Applied Scientific Computing at Lawrence Livermore National Laboratory. His research interests are in the areas of machine learning, computer vision, and data analysis and visualization. He has served as a reviewer for several IEEE, Elsevier, and Springer journals and conferences.

Karthikeyan Natesan Ramamurthy is a research staff member in the Business Solutions and Mathematical Sciences department at the IBM Thomas J. Watson Research Center in Yorktown Heights, NY. He received his M.S. and Ph.D. degrees in Electrical Engineering from Arizona State University. His research interests are in the areas of low-dimensional signal models, machine learning, data analytics, and computer vision. He has been a reviewer for a number of IEEE and Elsevier journals and conferences.
Pavan Turaga is an Assistant Professor with the School of Arts, Media, and Engineering and the School of Electrical, Computer, and Energy Engineering at Arizona State University, since 2011. Prior to that, he was a Research Associate at the Center for Automation Research, University of Maryland, College Park, MD, from 2009-11. He received M.S. and Ph.D. degrees in Electrical Engineering from the University of Maryland, College Park, MD, in 2008 and 2009 respectively, and the B.Tech. degree in Electronics and Communication Engineering from the Indian Institute of Technology, Guwahati, India, in 2004. His research interests are in computer vision, applied statistics, and machine learning with applications to human activity analysis, video summarization, and dynamic scene analysis. He was awarded the Distinguished Dissertation Fellowship in 2009. He was selected to participate in the Emerging Leaders in Multimedia Workshop by IBM, New York, in 2008.
Andreas Spanias is Professor in the School of Electrical, Computer, and Energy Engineering at Arizona State University (ASU). He is also the founder and director of the SenSIP industry consortium. His research interests are in the areas of adaptive signal processing, speech processing, and audio sensing. He and his student team developed the computer simulation software Java-DSP. He is author of two text books: Audio Processing and Coding by Wiley and DSP: An Interactive Approach. He served as Associate Editor of the IEEE Transactions on Signal Processing and as General Co-chair of IEEE ICASSP-99. He also served as the IEEE Signal Processing Vice-President for Conferences. Andreas Spanias is co-recipient of the 2002 IEEE Donald G. Fink paper prize award and was elected Fellow of the IEEE in 2003. He served as Distinguished lecturer for the IEEE Signal processing society in 2004.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer
  • Data di pubblicazione2014
  • ISBN 10 3031011228
  • ISBN 13 9783031011221
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero edizione1
  • Numero di pagine120
  • Contatto del produttorenon disponibile

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,53 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781627053594: Image Understanding using Sparse Representations

Edizione in evidenza

ISBN 10:  162705359X ISBN 13:  9781627053594
Casa editrice: Morgan & Claypool Publishers, 2014
Brossura

Risultati della ricerca per Image Understanding using Sparse Representations

Immagini fornite dal venditore

Thiagarajan, Jayaraman J.|Ramamurthy, Karthikeyan Natesan|Turaga, Pavan|Spanias, Andreas
ISBN 10: 3031011228 ISBN 13: 9783031011221
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Image understanding has been playing an increasingly crucial role in several inverse problems and computer vision. Sparse models form an important component in image understanding, since they emulate the activity of neural receptors in the primary visual co. Codice articolo 608129366

Contatta il venditore

Compra nuovo

EUR 32,69
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jayaraman J. Thiagarajan
ISBN 10: 3031011228 ISBN 13: 9783031011221
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Image understanding has been playing an increasingly crucial role in several inverse problems and computer vision. Sparse models form an important component in image understanding, since they emulate the activity of neural receptors in the primary visual cortex of the human brain. Sparse methods have been utilized in several learning problems because of their ability to provide parsimonious, interpretable, and efficient models. Exploiting the sparsity of natural signals has led to advances in several application areas including image compression, denoising, inpainting, compressed sensing, blind source separation, super-resolution, and classification. The primary goal of this book is to present the theory and algorithmic considerations in using sparse models for image understanding and computer vision applications. To this end, algorithms for obtaining sparse representations and their performance guarantees are discussed in the initial chapters. Furthermore, approaches for designing overcomplete, data-adapted dictionaries to model natural images are described. The development of theory behind dictionary learning involves exploring its connection to unsupervised clustering and analyzing its generalization characteristics using principles from statistical learning theory. An exciting application area that has benefited extensively from the theory of sparse representations is compressed sensing of image and video data. Theory and algorithms pertinent to measurement design, recovery, and model-based compressed sensing are presented. The paradigm of sparse models, when suitably integrated with powerful machine learning frameworks, can lead to advances in computer vision applications such as object recognition, clustering, segmentation, and activity recognition. Frameworks that enhance the performance of sparse models in such applications by imposing constraints based on the prior discriminatory information and the underlying geometrical structure, and kernelizing the sparse coding and dictionary learning methods are presented. In addition to presenting theoretical fundamentals in sparse learning, this book provides a platform for interested readers to explore the vastly growing application domains of sparse representations. 120 pp. Englisch. Codice articolo 9783031011221

Contatta il venditore

Compra nuovo

EUR 35,30
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Thiagarajan, Jayaraman J.; Ramamurthy, Karthikeyan Natesan; Turaga, Pavan; Spanias, Andreas
Editore: Springer, 2014
ISBN 10: 3031011228 ISBN 13: 9783031011221
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783031011221_new

Contatta il venditore

Compra nuovo

EUR 38,92
Convertire valuta
Spese di spedizione: EUR 10,67
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jayaraman J. Thiagarajan
ISBN 10: 3031011228 ISBN 13: 9783031011221
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Image understanding has been playing an increasingly crucial role in several inverse problems and computer vision. Sparse models form an important component in image understanding, since they emulate the activity of neural receptors in the primary visual cortex of the human brain. Sparse methods have been utilized in several learning problems because of their ability to provide parsimonious, interpretable, and efficient models. Exploiting the sparsity of natural signals has led to advances in several application areas including image compression, denoising, inpainting, compressed sensing, blind source separation, super-resolution, and classification. The primary goal of this book is to present the theory and algorithmic considerations in using sparse models for image understanding and computer vision applications. To this end, algorithms for obtaining sparse representations and their performance guarantees are discussed in the initial chapters. Furthermore, approaches for designing overcomplete, data-adapted dictionaries to model natural images are described. The development of theory behind dictionary learning involves exploring its connection to unsupervised clustering and analyzing its generalization characteristics using principles from statistical learning theory. An exciting application area that has benefited extensively from the theory of sparse representations is compressed sensing of image and video data. Theory and algorithms pertinent to measurement design, recovery, and model-based compressed sensing are presented. The paradigm of sparse models, when suitably integrated with powerful machine learning frameworks, can lead to advances in computer vision applications such as object recognition, clustering, segmentation, and activity recognition. Frameworks that enhance the performance of sparse models in such applications by imposing constraints based on the prior discriminatory information and the underlying geometrical structure, and kernelizing the sparse coding and dictionary learning methods are presented. In addition to presenting theoretical fundamentals in sparse learning, this book provides a platform for interested readers to explore the vastly growing application domains of sparse representations. Codice articolo 9783031011221

Contatta il venditore

Compra nuovo

EUR 35,30
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jayaraman J. Thiagarajan
ISBN 10: 3031011228 ISBN 13: 9783031011221
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -Image understanding has been playing an increasingly crucial role in several inverse problems and computer vision. Sparse models form an important component in image understanding, since they emulate the activity of neural receptors in the primary visual cortex of the human brain. Sparse methods have been utilized in several learning problems because of their ability to provide parsimonious, interpretable, and efficient models. Exploiting the sparsity of natural signals has led to advances in several application areas including image compression, denoising, inpainting, compressed sensing, blind source separation, super-resolution, and classification. The primary goal of this book is to present the theory and algorithmic considerations in using sparse models for image understanding and computer vision applications. To this end, algorithms for obtaining sparse representations and their performance guarantees are discussed in the initial chapters. Furthermore, approaches for designing overcomplete, data-adapted dictionaries to model natural images are described. The development of theory behind dictionary learning involves exploring its connection to unsupervised clustering and analyzing its generalization characteristics using principles from statistical learning theory. An exciting application area that has benefited extensively from the theory of sparse representations is compressed sensing of image and video data. Theory and algorithms pertinent to measurement design, recovery, and model-based compressed sensing are presented. The paradigm of sparse models, when suitably integrated with powerful machine learning frameworks, can lead to advances in computer vision applications such as object recognition, clustering, segmentation, and activity recognition. Frameworks that enhance the performance of sparse models in such applications by imposing constraints based on the prior discriminatory information and the underlying geometrical structure, and kernelizing the sparse coding and dictionary learning methods are presented. In addition to presenting theoretical fundamentals in sparse learning, this book provides a platform for interested readers to explore the vastly growing application domains of sparse representations.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 120 pp. Englisch. Codice articolo 9783031011221

Contatta il venditore

Compra nuovo

EUR 35,30
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Thiagarajan, Jayaraman J.; Ramamurthy, Karthikeyan Natesan; Turaga, Pavan; Spanias, Andreas
Editore: Springer, 2014
ISBN 10: 3031011228 ISBN 13: 9783031011221
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44545689-n

Contatta il venditore

Compra nuovo

EUR 38,77
Convertire valuta
Spese di spedizione: EUR 17,53
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Thiagarajan, Jayaraman J.; Ramamurthy, Karthikeyan Natesan; Turaga, Pavan; Spanias, Andreas
Editore: Springer, 2014
ISBN 10: 3031011228 ISBN 13: 9783031011221
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44545689-n

Contatta il venditore

Compra nuovo

EUR 38,90
Convertire valuta
Spese di spedizione: EUR 17,80
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Thiagarajan, Jayaraman J.; Ramamurthy, Karthikeyan Natesan; Turaga, Pavan; Spanias, Andreas
Editore: Springer, 2014
ISBN 10: 3031011228 ISBN 13: 9783031011221
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 44545689

Contatta il venditore

Compra usato

EUR 40,55
Convertire valuta
Spese di spedizione: EUR 17,53
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Thiagarajan, Jayaraman J.
Editore: Springer 2014-04, 2014
ISBN 10: 3031011228 ISBN 13: 9783031011221
Nuovo PF

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PF. Condizione: New. Codice articolo 6666-IUK-9783031011221

Contatta il venditore

Compra nuovo

EUR 36,31
Convertire valuta
Spese di spedizione: EUR 23,72
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Thiagarajan, Jayaraman J.; Ramamurthy, Karthikeyan Natesan; Turaga, Pavan; Spanias, Andreas
Editore: Springer, 2014
ISBN 10: 3031011228 ISBN 13: 9783031011221
Antico o usato Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 44545689

Contatta il venditore

Compra usato

EUR 44,08
Convertire valuta
Spese di spedizione: EUR 17,80
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 4 copie di questo libro

Vedi tutti i risultati per questo libro