Nowadays, fashion has become an essential aspect of people's daily life. As each outfit usually comprises several complementary items, such as a top, bottom, shoes, and accessories, a proper outfit largely relies on the harmonious matching of these items. Nevertheless, not everyone is good at outfit composition, especially those who have a poor fashion aesthetic. Fortunately, in recent years the number of online fashion-oriented communities, like IQON and Chictopia, as well as e-commerce sites, like Amazon and eBay, has grown. The tremendous amount of real-world data regarding people's various fashion behaviors has opened a door to automatic clothing matching.
Despite its significant value, compatibility modeling for clothing matching that assesses the compatibility score for a given set of (equal or more than two) fashion items, e.g., a blouse and a skirt, yields tough challenges: (a) the absence of comprehensive benchmark; (b) comprehensive compatibility modeling with the multi-modal feature variables is largely untapped; (c) how to utilize the domain knowledge to guide the machine learning; (d) how to enhance the interpretability of the compatibility modeling; and (e) how to model the user factor in the personalized compatibility modeling. These challenges have been largely unexplored to date.
In this book, we shed light on several state-of-the-art theories on compatibility modeling. In particular, to facilitate the research, we first build three large-scale benchmark datasets from different online fashion websites, including IQON and Amazon. We then introduce a general data-driven compatibility modeling scheme based on advanced neural networks. To make use of the abundant fashion domain knowledge, i.e., clothing matching rules, we next present a novel knowledge-guided compatibility modeling framework. Thereafter, to enhance the model interpretability, we put forward a prototype-wise interpretable compatibility modeling approach. Following that,noticing the subjective aesthetics of users, we extend the general compatibility modeling to the personalized version. Moreover, we further study the real-world problem of personalized capsule wardrobe creation, aiming to generate a minimum collection of garments that is both compatible and suitable for the user. Finally, we conclude the book and present future research directions, such as the generative compatibility modeling, virtual try-on with arbitrary poses, and clothing generation.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Xuemeng Song received a B.E. from the University of Science and Technology of China in 2012, and a Ph.D. from the School of Computing, National University of Singapore in 2016. She is currently an assistant professor of Shandong University, Jinan, China. Her research interests include information retrieval and social network analysis. She has published several papers in top venues, such as ACM SIGIR, MM, TIP,and TOIS. In addition, she has served as a reviewer for many top conferences and journals.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Nowadays, fashion has become an essential aspect of people s daily life. As each outfit usually comprises several complementary items, such as a top, bottom, shoes, and accessories, a proper outfit largely relies on the harmonious matching of these items. Codice articolo 608129434
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Nowadays, fashion has become an essential aspect of people's daily life. As each outfit usually comprises several complementary items, such as a top, bottom, shoes, and accessories, a proper outfit largely relies on the harmonious matching of these items. Nevertheless, not everyone is good at outfit composition, especially those who have a poor fashion aesthetic. Fortunately, in recent years the number of online fashion-oriented communities, like IQON and Chictopia, as well as e-commerce sites, like Amazon and eBay, has grown. The tremendous amount of real-world data regarding people's various fashion behaviors has opened a door to automatic clothing matching.Despite its significant value, compatibility modeling for clothing matching that assesses the compatibility score for a given set of (equal or more than two) fashion items, e.g., a blouse and a skirt, yields tough challenges: (a) the absence of comprehensive benchmark; (b) comprehensive compatibility modeling with the multi-modal feature variables is largely untapped; (c) how to utilize the domain knowledge to guide the machine learning; (d) how to enhance the interpretability of the compatibility modeling; and (e) how to model the user factor in the personalized compatibility modeling. These challenges have been largely unexplored to date.In this book, we shed light on several state-of-the-art theories on compatibility modeling. In particular, to facilitate the research, we first build three large-scale benchmark datasets from different online fashion websites, including IQON and Amazon. We then introduce a general data-driven compatibility modeling scheme based on advanced neural networks. To make use of the abundant fashion domain knowledge, i.e., clothing matching rules, we next present a novel knowledge-guided compatibility modeling framework. Thereafter, to enhance the model interpretability, we put forward a prototype-wise interpretable compatibility modeling approach. Following that, noticing the subjective aesthetics of users, we extend the general compatibility modeling to the personalized version. Moreover, we further study the real-world problem of personalized capsule wardrobe creation, aiming to generate a minimum collection of garments that is both compatible and suitable for the user. Finally, we conclude the book and present future research directions, such as the generative compatibility modeling, virtual try-on with arbitrary poses, and clothing generation. 118 pp. Englisch. Codice articolo 9783031011931
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Nowadays, fashion has become an essential aspect of people's daily life. As each outfit usually comprises several complementary items, such as a top, bottom, shoes, and accessories, a proper outfit largely relies on the harmonious matching of these items. Nevertheless, not everyone is good at outfit composition, especially those who have a poor fashion aesthetic. Fortunately, in recent years the number of online fashion-oriented communities, like IQON and Chictopia, as well as e-commerce sites, like Amazon and eBay, has grown. The tremendous amount of real-world data regarding people's various fashion behaviors has opened a door to automatic clothing matching.Despite its significant value, compatibility modeling for clothing matching that assesses the compatibility score for a given set of (equal or more than two) fashion items, e.g., a blouse and a skirt, yields tough challenges: (a) the absence of comprehensive benchmark; (b) comprehensive compatibility modeling with the multi-modal feature variables is largely untapped; (c) how to utilize the domain knowledge to guide the machine learning; (d) how to enhance the interpretability of the compatibility modeling; and (e) how to model the user factor in the personalized compatibility modeling. These challenges have been largely unexplored to date.In this book, we shed light on several state-of-the-art theories on compatibility modeling. In particular, to facilitate the research, we first build three large-scale benchmark datasets from different online fashion websites, including IQON and Amazon. We then introduce a general data-driven compatibility modeling scheme based on advanced neural networks. To make use of the abundant fashion domain knowledge, i.e., clothing matching rules, we next present a novel knowledge-guided compatibility modeling framework. Thereafter, to enhance the model interpretability, we put forward a prototype-wise interpretable compatibility modeling approach. Following that,noticing the subjective aesthetics of users, we extend the general compatibility modeling to the personalized version. Moreover, we further study the real-world problem of personalized capsule wardrobe creation, aiming to generate a minimum collection of garments that is both compatible and suitable for the user. Finally, we conclude the book and present future research directions, such as the generative compatibility modeling, virtual try-on with arbitrary poses, and clothing generation. Codice articolo 9783031011931
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. 1st edition NO-PA16APR2015-KAP. Codice articolo 26394683614
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18394683604
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 401726209
Quantità: 4 disponibili