Book IV continues the discussion begun in the first three volumes. Although it is aimed at first-year graduate students, it is also intended to serve as a basic reference for people working in affine differential geometry. It also should be accessible to undergraduates interested in affine differential geometry. We are primarily concerned with the study of affine surfaces {which} are locally homogeneous. We discuss affine gradient Ricci solitons, affine Killing vector fields, and geodesic completeness. Opozda has classified the affine surface geometries which are locally homogeneous; we follow her classification. Up to isomorphism, there are two simply connected Lie groups of dimension 2. The translation group ℝ² is Abelian and the �������� + ���� group\index{ax+b group} is non-Abelian. The first chapter presents foundational material. The second chapter deals with Type ���� surfaces. These are the left-invariant affine geometries on ℝ². Associating to each Type ���� surface the space of solutions to the quasi-Einstein equation corresponding to the eigenvalue ����=-1$ turns out to be a very powerful technique and plays a central role in our study as it links an analytic invariant with the underlying geometry of the surface. The third chapter deals with Type ���� surfaces; these are the left-invariant affine geometries on the �������� + ���� group. These geometries form a very rich family which is only partially understood. The only remaining homogeneous geometry is that of the sphere ����². The fourth chapter presents relations between the geometry of an affine surface and the geometry of the cotangent bundle equipped with the neutral signature metric of the modified Riemannian extension.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Esteban is a member of the research group in Riemannian Geometry at the Department of Geometry and Topology of the University of Santiago de Compostela (Spain). He received his Ph.D. in 2011 under the direction of E. Garcia-Rio and R. Vazquez-Lorenzo. His research specialty is Riemannian and pseudo-Riemannian geometry. He has published more than 20 research articles and books.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 11,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Book IV continues the discussion begun in the first three volumes. Although it is aimed at first-year graduate students, it is also intended to serve as a basic reference for people working in affine differential geometry. It also should be accessible to undergraduates interested in affine differential geometry. We are primarily concerned with the study of affine surfaces {which} are locally homogeneous. We discuss affine gradient Ricci solitons, affine Killing vector fields, and geodesic completeness. Opozda has classified the affine surface geometries which are locally homogeneous; we follow her classification. Up to isomorphism, there are two simply connected Lie groups of dimension 2. The translation group is Abelian and the + groupindex{ax+b group} is non-Abelian. The first chapter presents foundational material. The second chapter deals with Type surfaces. These are the left-invariant affine geometries on . Associating to each Type surface the space of solutions to the quasi-Einstein equation corresponding to the eigenvalue =-1$ turns out to be a very powerful technique and plays a central role in our study as it links an analytic invariant with the underlying geometry of the surface. The third chapter deals with Type surfaces; these are the left-invariant affine geometries on the + group. These geometries form a very rich family which is only partially understood. The only remaining homogeneous geometry is that of the sphere . The fourth chapter presents relations between the geometry of an affine surface and the geometry of the cotangent bundle equipped with the neutral signature metric of the modified Riemannian extension. 168 pp. Englisch. Codice articolo 9783031012884
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. 1st edition NO-PA16APR2015-KAP. Codice articolo 26394683536
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 401726287
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18394683546
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Esteban is a member of the research group in Riemannian Geometry at the Department of Geometry and Topology of the University of Santiago de Compostela (Spain). He received his Ph.D. in 2011 under the direction of E. Garcia-Rio and R. Vazquez-Lorenzo. His r. Codice articolo 608129505
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Book IV continues the discussion begun in the first three volumes. Although it is aimed at first-year graduate students, it is also intended to serve as a basic reference for people working in affine differential geometry. It also should be accessible to undergraduates interested in affine differential geometry. We are primarily concerned with the study of affine surfaces {which} are locally homogeneous. We discuss affine gradient Ricci solitons, affine Killing vector fields, and geodesic completeness. Opozda has classified the affine surface geometries which are locally homogeneous; we follow her classification. Up to isomorphism, there are two simply connected Lie groups of dimension 2. The translation group is Abelian and the + groupindex{ax+b group} is non-Abelian. The first chapter presents foundational material. The second chapter deals with Type surfaces. These are the left-invariant affine geometries on . Associating to each Type surface the space of solutions to the quasi-Einstein equation corresponding to the eigenvalue =-1$ turns out to be a very powerful technique and plays a central role in our study as it links an analytic invariant with the underlying geometry of the surface. The third chapter deals with Type surfaces; these are the left-invariant affine geometries on the + group. These geometries form a very rich family which is only partially understood. The only remaining homogeneous geometry is that of the sphere . The fourth chapter presents relations between the geometry of an affine surface and the geometry of the cotangent bundle equipped with the neutral signature metric of the modified Riemannian extension. Codice articolo 9783031012884
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Book IV continues the discussion begun in the first three volumes. Although it is aimed at first-year graduate students, it is also intended to serve as a basic reference for people working in affine differential geometry. It also should be accessible to undergraduates interested in affine differential geometry. We are primarily concerned with the study of affine surfaces {which} are locally homogeneous. We discuss affine gradient Ricci solitons, affine Killing vector fields, and geodesic completeness. Opozda has classified the affine surface geometries which are locally homogeneous; we follow her classification. Up to isomorphism, there are two simply connected Lie groups of dimension 2. The translation group ¿ is Abelian and the ¿¿¿¿¿¿¿¿ + ¿¿¿¿ groupindex{ax+b group} is non-Abelian. The first chapter presents foundational material. The second chapter deals with Type ¿¿¿¿ surfaces. These are the left-invariant affine geometries on ¿ . Associating to each Type ¿¿¿¿ surface the space of solutions to the quasi-Einstein equation corresponding to the eigenvalue ¿¿¿¿=-1$ turns out to be a very powerful technique and plays a central role in our study as it links an analytic invariant with the underlying geometry of the surface. The third chapter deals with Type ¿¿¿¿ surfaces; these are the left-invariant affine geometries on the ¿¿¿¿¿¿¿¿ + ¿¿¿¿ group. These geometries form a very rich family which is only partially understood. The only remaining homogeneous geometry is that of the sphere ¿¿¿¿ . The fourth chapter presents relations between the geometry of an affine surface and the geometry of the cotangent bundle equipped with the neutral signature metric of the modified Riemannian extension.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 168 pp. Englisch. Codice articolo 9783031012884
Quantità: 1 disponibili