Articoli correlati a Population-based Optimization on Riemannian Manifolds:...

Population-based Optimization on Riemannian Manifolds: 1046 - Rilegato

 
9783031042928: Population-based Optimization on Riemannian Manifolds: 1046

Sinossi

Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold. 

Manifold optimization methods mainly focus on adapting existing optimization methods from the usual “easy-to-deal-with” Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry.

This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space.

This monograph presents in a self-contained manner both theoretical and empirical aspects of stochastic population-based optimization on abstract Riemannian manifolds.


Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Dalla quarta di copertina

Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold. 

Manifold optimization methods mainly focus on adapting existing optimization methods from the usual “easy-to-deal-with” Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry.

This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space.

This monograph presents in a self-contained manner both theoretical and empirical aspects of stochastic population-based optimization on abstract Riemannian manifolds.


Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: molto buono
Cover and edges may have some wear...
Visualizza questo articolo

EUR 12,35 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 10,36 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783031042959: Population-Based Optimization on Riemannian Manifolds: 1046

Edizione in evidenza

ISBN 10:  3031042956 ISBN 13:  9783031042959
Casa editrice: Springer, 2023
Brossura

Risultati della ricerca per Population-based Optimization on Riemannian Manifolds:...

Foto dell'editore

Fong, Robert Simon; Tino, Peter
Editore: Springer, 2022
ISBN 10: 3031042921 ISBN 13: 9783031042928
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783031042928_new

Contatta il venditore

Compra nuovo

EUR 72,64
Convertire valuta
Spese di spedizione: EUR 10,36
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Peter Tino, Robert Simon Fong
ISBN 10: 3031042921 ISBN 13: 9783031042928
Nuovo Rilegato

Da: Rarewaves.com UK, London, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardback. Condizione: New. 2022 ed. Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold. Manifold optimization methods mainly focus on adapting existing optimization methods from the usual "easy-to-deal-with" Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry.This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space.This monograph presents in a self-contained manner both theoretical and empirical aspects of stochastic population-based optimization on abstract Riemannian manifolds. Codice articolo LU-9783031042928

Contatta il venditore

Compra nuovo

EUR 83,89
Convertire valuta
Spese di spedizione: EUR 2,30
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Peter Tino, Robert Simon Fong
ISBN 10: 3031042921 ISBN 13: 9783031042928
Nuovo Rilegato

Da: Rarewaves.com USA, London, LONDO, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardback. Condizione: New. 2022 ed. Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold. Manifold optimization methods mainly focus on adapting existing optimization methods from the usual "easy-to-deal-with" Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry.This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space.This monograph presents in a self-contained manner both theoretical and empirical aspects of stochastic population-based optimization on abstract Riemannian manifolds. Codice articolo LU-9783031042928

Contatta il venditore

Compra nuovo

EUR 90,10
Convertire valuta
Spese di spedizione: EUR 2,30
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Fong, Robert Simon,Tino, Peter
Editore: Springer, 2022
ISBN 10: 3031042921 ISBN 13: 9783031042928
Antico o usato Rilegato

Da: Books From California, Simi Valley, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

hardcover. Condizione: Very Good. Cover and edges may have some wear. Codice articolo mon0003813126

Contatta il venditore

Compra usato

EUR 84,83
Convertire valuta
Spese di spedizione: EUR 12,35
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Peter Tino, Robert Simon Fong
ISBN 10: 3031042921 ISBN 13: 9783031042928
Antico o usato Rilegato

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Hervorragend. Zustand: Hervorragend | Seiten: 180 | Sprache: Englisch | Produktart: Bücher. Codice articolo 38794602/1

Contatta il venditore

Compra usato

EUR 102,19
Convertire valuta
Spese di spedizione: GRATIS
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Robert Simon Fong|Peter Tino
ISBN 10: 3031042921 ISBN 13: 9783031042928
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents recent research on Population-based Optimization on Riemannian manifolds Addresses the locality and implicit assumptions of manifold optimization Presents a novel population-based optimization algorithm on Riemannian manifolds . Codice articolo 575523153

Contatta il venditore

Compra nuovo

EUR 118,61
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Peter Tino
ISBN 10: 3031042921 ISBN 13: 9783031042928
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Manifold optimization is an emerging field of contemporary optimization thatconstructs efficient and robust algorithms by exploiting the specific geometricalstructure of the search space. In our case the search space takes the form of amanifold.Manifold optimization methods mainly focus on adapting existing optimizationmethods from the usual 'easy-to-deal-with' Euclidean search spaces to manifoldswhose local geometry can be defined e.g. by a Riemannian structure. In this waythe form of the adapted algorithms can stay unchanged. However, to accommodatethe adaptation process, assumptions on the search space manifold often have tobe made. In addition, the computations and estimations are confined by the localgeometry.This book presents a framework for population-based optimization on Riemannianmanifolds that overcomes both the constraints of locality and additional assumptions.Multi-modal, black-box manifold optimization problems on Riemannian manifoldscan be tackled using zero-order stochastic optimization methods from a geometricalperspective, utilizing both the statistical geometry of the decision spaceand Riemannian geometry of the search space.This monograph presents in a self-contained manner both theoretical and empiricalaspects ofstochastic population-based optimization on abstract Riemannianmanifolds. 180 pp. Englisch. Codice articolo 9783031042928

Contatta il venditore

Compra nuovo

EUR 139,09
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Peter Tino
ISBN 10: 3031042921 ISBN 13: 9783031042928
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Manifold optimization is an emerging field of contemporary optimization thatconstructs efficient and robust algorithms by exploiting the specific geometricalstructure of the search space. In our case the search space takes the form of amanifold.Manifold optimization methods mainly focus on adapting existing optimizationmethods from the usual 'easy-to-deal-with' Euclidean search spaces to manifoldswhose local geometry can be defined e.g. by a Riemannian structure. In this waythe form of the adapted algorithms can stay unchanged. However, to accommodatethe adaptation process, assumptions on the search space manifold often have tobe made. In addition, the computations and estimations are confined by the localgeometry.This book presents a framework for population-based optimization on Riemannianmanifolds that overcomes both the constraints of locality and additional assumptions.Multi-modal, black-box manifold optimization problems on Riemannian manifoldscan be tackled using zero-order stochastic optimization methods from a geometricalperspective, utilizing both the statistical geometry of the decision spaceand Riemannian geometry of the search space.This monograph presents in a self-contained manner both theoretical and empiricalaspects ofstochastic population-based optimization on abstract Riemannianmanifolds. Codice articolo 9783031042928

Contatta il venditore

Compra nuovo

EUR 139,09
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Peter Tino
ISBN 10: 3031042921 ISBN 13: 9783031042928
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold.Manifold optimization methods mainly focus on adapting existing optimization methods from the usual ¿easy-to-deal-with¿ Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry.This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space.This monograph presents in a self-contained manner both theoretical and empirical aspects of stochastic population-based optimization on abstract Riemannian manifolds.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 180 pp. Englisch. Codice articolo 9783031042928

Contatta il venditore

Compra nuovo

EUR 139,09
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Fong, Robert Simon; Tino, Peter
Editore: Springer, 2022
ISBN 10: 3031042921 ISBN 13: 9783031042928
Nuovo Rilegato

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9783031042928

Contatta il venditore

Compra nuovo

EUR 146,53
Convertire valuta
Spese di spedizione: EUR 7,67
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 1 copie di questo libro

Vedi tutti i risultati per questo libro