An Introduction to the Mechanics of Incompressible Fluids - Rilegato

Deville, Michel O.

 
9783031046827: An Introduction to the Mechanics of Incompressible Fluids

Sinossi

This open access book allows the reader to grasp the main bulk of fluid flow problems at a brisk pace. Starting with the basic concepts of conservation laws developed using continuum mechanics, the incompressibility of a fluid is explained and modeled, leading to the famous Navier-Stokes equation that governs the dynamics of fluids. Some exact solutions for transient and steady-state cases in Cartesian and axisymmetric coordinates are proposed. A particular set of examples is associated with creeping or Stokes flows, where viscosity is the dominant physical phenomenon. Irrotational flows are treated by introducing complex variables. The use of the conformal mapping and the Joukowski transformation allows the treatment of the flow around an airfoil.  The boundary layer theory corrects the earlier approach with the Prandtl equations, their solution for the case of a flat plate, and the von Karman integral equation. The instability of fluid flows is studied for parallel flows using the Orr-Sommerfeld equation. The stability of a circular Couette flow is also described. The book ends with the modeling of turbulence by the Reynolds-averaged Navier-Stokes equations and large-eddy simulations. Each chapter includes useful practice problems and their solutions.

 

The book is useful for engineers, physicists, and scientists interested in the fascinating field of fluid mechanics.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Michel O. Deville is an Emeritus Professor of the Ecole Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne). He was the director of the Computational Engineering Laboratory dedicated mainly to Computational Fluid Dynamics. He has been consultant for ONERA, the French aerospace lab, and Editor-in-Chief of the Journal Computers and Fluids. He taught Fluid Mechanics courses over two decades to Mechanical Engineering and Physics students. 

Dalla quarta di copertina

This open access book allows the reader to grasp the main bulk of fluid flow problems at a brisk pace. Starting with the basic concepts of conservation laws developed using continuum mechanics, the incompressibility of a fluid is explained and modeled, leading to the famous Navier-Stokes equation that governs the dynamics of fluids. Some exact solutions for transient and steady-state cases in Cartesian and axisymmetric coordinates are proposed. A particular set of examples is associated with creeping or Stokes flows, where viscosity is the dominant physical phenomenon. Irrotational flows are treated by introducing complex variables. The use of the conformal mapping and the Joukowski transformation allows the treatment of the flow around an airfoil.  The boundary layer theory corrects the earlier approach with the Prandtl equations, their solution for the case of a flat plate, and the von Karman integral equation. The instability of fluid flows is studied for parallel flows using the Orr-Sommerfeld equation. The stability of a circular Couette flow is also described. The book ends with the modeling of turbulence by the Reynolds-averaged Navier-Stokes equations and large-eddy simulations. Each chapter includes useful practice problems and their solutions.


The book is useful for engineers, physicists, and scientists interested in the fascinating field of fluid mechanics.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9783031046858: An Introduction to the Mechanics of Incompressible Fluids

Edizione in evidenza

ISBN 10:  3031046854 ISBN 13:  9783031046858
Casa editrice: Springer Nature, 2023
Brossura