Articoli correlati a Elements of Data Science, Machine Learning, and Artificial...

Elements of Data Science, Machine Learning, and Artificial Intelligence Using R - Brossura

 
9783031133411: Elements of Data Science, Machine Learning, and Artificial Intelligence Using R

Sinossi

The textbook provides students with tools they need to analyze complex data using methods from data science, machine learning and artificial intelligence. The authors include both the presentation of methods along with applications using the programming language R, which is the gold standard for analyzing data. The authors cover all three main components of data science: computer science; mathematics and statistics; and domain knowledge. The book presents methods and implementations in R side-by-side, allowing the immediate practical application of the learning concepts. Furthermore, this teaches computational thinking in a natural way. The book includes exercises, case studies, Q&A and examples.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Frank Emmert-Streib is Professor of Data Science at Tampere University (Finland). He leads the Predictive Society and Data Analytics Lab, which pursues innovative research in deep learning and natural language processing. The Lab develops and applies high-dimensional methods in machine learning, statistics, and artificial intelligence that can be used to extract knowledge from data in the fields of biology, medicine, social media, social sciences, marketing, or business.

Salissou Moutari is Senior Lecturer at Queen’s University Belfast (UK) and Interim Director of Research of the Mathematical Science Research Centre (MSRC). His research interests include mathematical modelling, optimization, machine learning and data science, and the applications of these methods to problems from traffic, transportation and distribution systems, production planning and industrial processes.

Matthias Dehmer is Professor at UMIT (Austria) and also has a position at Swiss Distance University of Applied Sciences, Brig, Switzerland. His research interests are in complex networks, complexity, data science, machine learning, big data analytics, and information theory. In particular, he is working on machine learning based methods to analyse high-dimensional data.


Dalla quarta di copertina

In recent years, large amounts of data became available in all areas of science, industry and society. This provides unprecedented opportunities for enhancing our knowledge, and to solve scientific and societal problems. In order to emphasize the importance of this, data have been called the "oil of the 21st Century". Unfortunately, data do usually not reveal information easily, but analysis methods are required to extract it. This is the main task of data science.


The textbook provides students with tools they need to analyze complex data using methods from machine learning, artificial intelligence and statistics. These are the main fields comprised by data science. The authors include both the presentation of methods along with applications using the programming language R, which is the gold standard for analyzing data. This allows the immediate practical application of the learning concepts side-by-side.


The book advocates an integration of statistical thinking, computational thinking and mathematical thinking because data science is an interdisciplinary field requiring an understanding of statistics, computer science and mathematics. Furthermore, the book highlights the understanding of the domain knowledge about experiments or processes that generate or produce the data. The goal of the authors is to provide students with a systematic approach to data science that allows a continuation of the learning process beyond the presented topics. Hence, the book enables learning to learn.

Main features of the book:
- emphasizing the understanding of methods and underlying concepts
- integrating statistical thinking, computational thinking and mathematical thinking
- highlighting the understanding of the data
- exploring the power of visualizations
- balancing theoretical and practicalpresentations 
- demonstrating the application of methods using R
- providing detailed examples and discussions
- presenting data science as a complex network

Elements of Data Science, Machine Learning and Artificial Intelligence using R presents basic, intermediate and advanced methods for learning from data, culminating into a practical toolbox for a modern data scientist. The comprehensive coverage allows a wide range of usages of the textbook from (advanced) undergraduate to graduate courses. 

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 11,00 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783031133381: Elements of Data Science, Machine Learning, and Artificial Intelligence Using R

Edizione in evidenza

ISBN 10:  3031133382 ISBN 13:  9783031133381
Casa editrice: Springer Nature, 2023
Rilegato

Risultati della ricerca per Elements of Data Science, Machine Learning, and Artificial...

Foto dell'editore

Frank Emmert-Streib
ISBN 10: 3031133412 ISBN 13: 9783031133411
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware Englisch. Codice articolo 9783031133411

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Frank Emmert-Streib
ISBN 10: 3031133412 ISBN 13: 9783031133411
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering. Codice articolo 9783031133411

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Frank Emmert-Streib
ISBN 10: 3031133412 ISBN 13: 9783031133411
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -The textbook provides students with tools they need to analyze complex data using methods from data science, machine learning and artificial intelligence. The authors include both the presentation of methods along with applications using the programming language R, which is the gold standard for analyzing data. The authors cover all three main components of data science: computer science; mathematics and statistics; and domain knowledge. The book presents methods and implementations in R side-by-side, allowing the immediate practical application of the learning concepts. Furthermore, this teaches computational thinking in a natural way. The book includes exercises, case studies, Q&A and examples.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 596 pp. Englisch. Codice articolo 9783031133411

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello