Articoli correlati a Machine Learning for Indoor Localization and Navigation

Machine Learning for Indoor Localization and Navigation - Rilegato

 
9783031267116: Machine Learning for Indoor Localization and Navigation

Sinossi

While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve the accuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation. 


In particular, the book:
  • Provides comprehensive coverage of the application of machine learning to the domain of indoor localization;
  • Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization;
  • Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions.



Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Saideep Tiku is a Walter Scott Jr. College of Engineering Ph.D. candidate in the Department of Electrical and Computer Engineering Department at Colorado State University, Fort Collins, Colorado, USA. He is a Research Assistant at the Embedded, High Performance, and Intelligent Computing (EPIC) Laboratory and his interests include indoor localization, and energy efficiency for fault tolerant embedded systems. His work in the domain of machine learning-based indoor localization has been published and recognized globally in conferences and journals including ACM GLSVLSI 2018, ACM TECS 2019, ACM/IEEE DAC 2019, ACM TCPS 2021, IEEE DATE 2021. He is the recipient of two best paper/poster awards and currently holds 10 (1 awarded, 9 filed) patents in the domain of machine learning-based indoor localization and other fields of applications for machine learning on embedded systems. Saideep Tiku received his B.E. degree in Electronics and Electrical Communication from Panjab University, India in 2013. During his time at CSU, he has worked on embedded projects with companies such as Fiat-Chrysler Automobiles, Mentor Graphics (now Siemens), and Micron Technology. He is the mentor for the undergraduate senior design program at CSU for teams in the domain of indoor localization which was also awarded funding from Keysight technologies. He has served as the INTO program tutor for CSU and the Teaching Assistant for the coursework Hardware/Software Design of Embedded Systems. Saideep Tiku has reviewed 13 publications for reputable conferences and journals and also served as the student volunteer for ACM/IEEE ESWEEK 2021. He is a Student Member of the IEEE.

 

Sudeep Pasricha is a Walter Scott Jr. College of Engineering Professor in the Department of Electrical and Computer Engineering, the Department of Computer Science, and the Department of Systems Engineering at Colorado State University. He is Director of the Embedded, High Performance, and Intelligent Computing (EPIC) Laboratory and the Chair of Computer Engineering. Prof. Pasricha received the B.E. degree in Electronics and Communication Engineering from Delhi Institute of Technology, India, in 2000, and his Ph.D. in Computer Science from the University of California, Irvine in 2008. He joined Colorado State University (CSU) in 2008. Prior to joining CSU, he spent several years working in STMicroelectronics and Conexant Inc. Prof. Pasricha’s research broadly focuses on software algorithms, hardware architectures, and hardware-software co-design for energy-efficient, fault-tolerant, real-time, and secure computing. These efforts target multi-scale computing platforms, including embedded and Internet of Things (IoT) systems, cyber-physical systems, mobile devices, and datacenters. He has received funding for his research from various sponsors such as the NSF, SRC, AFOSR, ORNL, DoD, Fiat-Chrysler, and NASA. He has co-authored five books, contributed to several book chapters, and published more than 250 research articles in peer-reviewed conferences, journals, and books.

Prof. Pasricha has received 16 Best Paper Awards and Nominations at various IEEE and ACM conferences, including at DAC, ASPDAC, NOCS, GLSVLSI, SLIP, AICCSA, and ISQED. Other notable awards include: the 2022 ACM Distinguished Speaker selection, 2019 George T. Abell Outstanding Research Faculty Award, the 2016-2018 University Distinguished Monfort Professorship, 2016-2019 Walter Scott Jr. College of Engineering Rockwell-Anderson Professorship, 2018 IEEE-CS/TCVLSI mid-career research

Achievement Award, the 2015 IEEE/TCSC Award for Excellence for a mid-career researcher, the 2014 George T. Abell Outstanding Mid-career Faculty Award, and the 2013 AFOSR Young Investigator Award.

Prof. Pasricha is currently the Vice Chair and Conference Chair of ACM SIGDA and a Senior Associate Editor for the ACM Journal of Emerging Technologies in Computing (JETC). He is currently or has been an Associate Editor for the ACM Transactions on Embedded Computing Systems (TECS), IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), IEEE Consumer Electronics (CM), and IEEE Design & Test of Computers (D&T). He also serves as the Chair of the steering committee of IEEE Transactions on Sustainable Computing (TSUSC). He is currently or has been an Organizing Committee Member of several IEEE/ACM conferences such as DAC, ESWEEK, ICCAD, GLSVLSI, NOCS, RTCSA, etc. He has served as the General Chair for various IEEE/ACM conferences such as NOCS, HCW, IGSC, iSES, ICESS, etc.; and as Program Chair for CODES+ISSS, NOCS, IGSC, iNIS, VLSID, HCW, DAC PhD Forum, ICCAD Cadathlon, etc. He is also in the Technical Program Committee of several IEEE/ACM conferences such as DAC, DATE, ICCAD, ICCD, NOCS, etc. He holds an affiliate faculty member position at the Center for Embedded and Cyber-Physical Systems at UC Irvine. He has also received multiple awards for professional service, including the 2019 ACM SIGDA Distinguished Service Award, the 2015 ACM SIGDA Service Award, and the 2012 ACM SIGDA Technical Leadership Award.

Dalla quarta di copertina

While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve the accuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies several

novel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation. In particular, the book: 1) provides comprehensive coverage of the application of machine learning to the domain of indoor localization and navigation; 2) presents techniques to adapt and optimize machine learning models for fast, energy-efficient, and robust indoor localization and navigation; and 3) covers design and deployment of indoor localization and navigation frameworks on mobile, IoT, and embedded devices in real-world conditions.

  • Provides comprehensive coverage of the application of machine learning to the domain of indoor localization;
  • Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization;
  • Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,21 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

GRATIS per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783031267147: Machine Learning for Indoor Localization and Navigation

Edizione in evidenza

ISBN 10:  3031267141 ISBN 13:  9783031267147
Casa editrice: Springer-Nature New York Inc, 2024
Brossura

Risultati della ricerca per Machine Learning for Indoor Localization and Navigation

Foto dell'editore

Tiku
Editore: Springer, 2023
ISBN 10: 3031267117 ISBN 13: 9783031267116
Nuovo Rilegato

Da: Basi6 International, Irving, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-261374

Contatta il venditore

Compra nuovo

EUR 89,35
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2023
ISBN 10: 3031267117 ISBN 13: 9783031267116
Nuovo Rilegato

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 1st ed. 2023 edition NO-PA16APR2015-KAP. Codice articolo 26396294583

Contatta il venditore

Compra nuovo

EUR 106,88
Convertire valuta
Spese di spedizione: EUR 7,75
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

ISBN 10: 3031267117 ISBN 13: 9783031267116
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such. Codice articolo 799921344

Contatta il venditore

Compra nuovo

EUR 107,09
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2023
ISBN 10: 3031267117 ISBN 13: 9783031267116
Nuovo Rilegato

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 401163880

Contatta il venditore

Compra nuovo

EUR 108,39
Convertire valuta
Spese di spedizione: EUR 10,23
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2023
ISBN 10: 3031267117 ISBN 13: 9783031267116
Nuovo Rilegato

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 18396294589

Contatta il venditore

Compra nuovo

EUR 113,25
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tiku, Saideep (EDT); Pasricha, Sudeep (EDT)
Editore: Springer, 2023
ISBN 10: 3031267117 ISBN 13: 9783031267116
Nuovo Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 46171024-n

Contatta il venditore

Compra nuovo

EUR 117,93
Convertire valuta
Spese di spedizione: EUR 17,35
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tiku, Saideep (EDT); Pasricha, Sudeep (EDT)
Editore: Springer, 2023
ISBN 10: 3031267117 ISBN 13: 9783031267116
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 46171024-n

Contatta il venditore

Compra nuovo

EUR 118,43
Convertire valuta
Spese di spedizione: EUR 17,21
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2023
ISBN 10: 3031267117 ISBN 13: 9783031267116
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783031267116_new

Contatta il venditore

Compra nuovo

EUR 128,66
Convertire valuta
Spese di spedizione: EUR 10,40
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sudeep Pasricha
ISBN 10: 3031267117 ISBN 13: 9783031267116
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniques that utilize emerging deep machine learning and statistical techniques to address the challenges for indoor localization and navigation.In particular, the book:Provides comprehensive coverage of the application of machine learning to the domain of indoor localization;Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization;Covers design and deployment of indoor localization frameworks on mobile, IoT, and embedded devices in real conditions. 584 pp. Englisch. Codice articolo 9783031267116

Contatta il venditore

Compra nuovo

EUR 128,39
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

TIKU S.
Editore: SPRINGER NP, 2023
ISBN 10: 3031267117 ISBN 13: 9783031267116
Nuovo Rilegato

Da: UK BOOKS STORE, London, LONDO, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Brand New! Fast Delivery US Edition and ship within 24-48 hours. Deliver by FedEx and Dhl, & Aramex, UPS, & USPS and we do accept APO and PO BOX Addresses. Order can be delivered worldwide within 7-10 days and we do have flat rate for up to 2LB. Extra shipping charges will be requested if the Book weight is more than 5 LB. This Item May be shipped from India, United states & United Kingdom. Depending on your location and availability. Codice articolo CBS 9783031267116

Contatta il venditore

Compra nuovo

EUR 134,95
Convertire valuta
Spese di spedizione: EUR 5,77
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 8 copie di questo libro

Vedi tutti i risultati per questo libro