Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Max Cohen is a Ph.D. Candidate and National Science Foundation Graduate Research Fellow in the Department of Mechanical Engineering at Boston University. He received his B.S. in Mechanical Engineering from the University of Florida and his M.S. in Mechanical Engineering from Boston University. Outside of academia he has worked as a Systems Engineer at Lockheed Martin and held research internships at MIT Lincoln Laboratory. His research interests include nonlinear control theory, learning-based control, and hybrid systems, with applications in robotics and autonomous systems.?
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,90 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Buchpark, Trebbin, Germania
Condizione: Hervorragend. Zustand: Hervorragend | Seiten: 216 | Sprache: Englisch | Produktart: Bücher. Codice articolo 41714813/1
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Codice articolo 826165202
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book stems from the growing use of learning-based techniques, such as reinforcement learning and adaptive control, in the control of autonomous and safety-critical systems. Safety is critical to many applications, such as autonomous driving, air traffic control, and robotics.As these learning-enabled technologies become more prevalent in the control of autonomous systems, it becomes increasingly important to ensure that such systems are safe. To address these challenges, the authors provide a self-contained treatment of learning-based control techniques with rigorous guarantees of stability and safety. This book contains recent results on provably correct control techniques from specifications that go beyond safety and stability, such as temporal logic formulas. The authors bring together control theory, optimization, machine learning, and formal methods and present worked-out examples and extensive simulation examples to complement the mathematical style of presentation. Prerequisites are minimal, and the underlying ideas are accessible to readers with only a brief background in control-theoretic ideas, such as Lyapunov stability theory. 216 pp. Englisch. Codice articolo 9783031293092
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book stems from the growing use of learning-based techniques, such as reinforcement learning and adaptive control, in the control of autonomous and safety-critical systems. Safety is critical to many applications, such as autonomous driving, air traffic control, and robotics.As these learning-enabled technologies become more prevalent in the control of autonomous systems, it becomes increasingly important to ensure that such systems are safe. To address these challenges, the authors provide a self-contained treatment of learning-based control techniques with rigorous guarantees of stability and safety. This book contains recent results on provably correct control techniques from specifications that go beyond safety and stability, such as temporal logic formulas. The authors bring together control theory, optimization, machine learning, and formal methods and present worked-out examples and extensive simulation examples to complement the mathematical style of presentation. Prerequisites are minimal, and the underlying ideas are accessible to readers with only a brief background in control-theoretic ideas, such as Lyapunov stability theory. Codice articolo 9783031293092
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -This book stems from the growing use of learning-based techniques, such as reinforcement learning and adaptive control, in the control of autonomous and safety-critical systems. Safety is critical to many applications, such as autonomous driving, air traffic control, and robotics. As these learning-enabled technologies become more prevalent in the control of autonomous systems, it becomes increasingly important to ensure that such systems are safe. To address these challenges, the authors provide a self-contained treatment of learning-based control techniques with rigorous guarantees of stability and safety. This book contains recent results on provably correct control techniques from specifications that go beyond safety and stability, such as temporal logic formulas. The authors bring together control theory, optimization, machine learning, and formal methods and present worked-out examples and extensive simulation examples to complement the mathematical style of presentation. Prerequisites are minimal, and the underlying ideas are accessible to readers with only a brief background in control-theoretic ideas, such as Lyapunov stability theory.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch. Codice articolo 9783031293092
Quantità: 2 disponibili