Articoli correlati a Neural Networks and Deep Learning: A Textbook

Neural Networks and Deep Learning: A Textbook - Brossura

 
9783031296444: Neural Networks and Deep Learning: A Textbook

Sinossi

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Deep learning methods for various data domains, such as text, images, and graphs are presented in detail. The chapters of this book span three categories:

 

The basics of neural networks: The backpropagation algorithm is discussed in Chapter 2.

Many traditional machine learning models can be understood as special cases of neural networks. Chapter 3 explores the connections between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks.

 

Fundamentals of neural networks:  A detailed discussion of training and regularization is provided in Chapters 4 and 5. Chapters 6 and 7 present radial-basis function (RBF) networks and restricted Boltzmann machines.

 

Advanced topics in neural networks:  Chapters 8, 9, and 10 discuss recurrent neural networks, convolutional neural networks, and graph neural networks. Several advanced topics like deep reinforcement learning, attention mechanisms, transformer networks, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 11 and 12.

 

The textbook is written for graduate students and upper under graduate level students. Researchers and practitioners working within this related field will want to purchase this as well.

Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

The second edition is substantially reorganized and expanded with separate chapters on backpropagation and graph neural networks. Many chapters have been significantly revised over the first edition.

Greater focus is placed on modern deep learning ideas such as attention mechanisms, transformers, and pre-trained language models.


Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Charu C. Aggarwal is a Distinguished Research Staff Member(DRSM) at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his undergraduate degree in Computer Science from the Indian Institute of Technology at Kanpur in 1993 and his Ph.D. from the Massachusetts Institute of Technology in 1996. He has worked extensively in the field of data mining. He has published more than 400 papers in refereed conferences and journals and authored over 80 patents. He is the author or editor of 20 books, including textbooks on data mining, recommender systems, and outlier analysis. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM. He is a recipient of an IBM Corporate Award (2003) for his work on bio-terrorist threat detection in data streams, a recipient of the IBM Outstanding Innovation Award (2008) for his scientific contributions to privacy technology, and a recipient of two IBM Outstanding Technical AchievementAwards (2009, 2015) for his work on data streams/high-dimensional data. He received the EDBT 2014 Test of Time Award for his work on condensation-based privacy-preserving data mining. He is a recipient of the IEEE ICDM Research Contributions Award (2015) and ACM SIGKDD Innovation Award, which are the two most prestigious awards for influential research contributions in the field of data mining. He is also a recipient of the W. Wallace McDowell Award, which is the highest award given solely by the IEEE Computer Society across the field of Computer Science.

He has served as the general co-chair of the IEEE Big Data Conference (2014) and as the program co-chair of the ACM CIKM Conference (2015), the IEEE ICDM Conference (2015), and the ACM KDD Conference (2016). He served as an associate editor of the IEEE Transactions on Knowledge and Data Engineering from 2004 to 2008. He is an associate editor of the IEEE Transactions on Big Data, an action editor of the DataMining and Knowledge Discovery Journal, and an associate editor of the Knowledge and Information System Journal. He has served or currently serves as the editor-in-chief of the ACM Transactions on Knowledge Discovery from Data as well as the ACM SIGKDD Explorations. He is also an editor-in-chief of ACM Books. He serves on the advisory board of the Lecture Notes on Social Networks, a publication by Springer. He has served as the vice-president of the SIAM Activity Group on Data Mining and is a member of the SIAM industry committee. He is a fellow of the SIAM, ACM, and the IEEE, for “contributions to knowledge discovery and data mining algorithms.

Dalla quarta di copertina

This book covers both classical and modern models in deep learning. The chapters of this book span three categories:

1. The basics of neural networks: The backpropagation algorithm is discussed in Chapter 2. Many traditional machine learning models can be understood as special cases of neural networks. Chapter 3 explores the connections between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks.

2. Fundamentals of neural networks:  A detailed discussion of training and regularization is provided in Chapters 4 and 5. Chapters 6 and 7 present radial-basis function (RBF) networks and restricted Boltzmann machines.

3. Advanced topics in neural networks:  Chapters 8, 9, and 10 discuss recurrent neural networks, convolutional neural networks, and graph neuralnetworks. Several advanced topics like deep reinforcement learning, attention mechanisms, transformer networks, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 11 and 12.

The book is written for graduate students, researchers, and practitioners. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques. The second edition is substantially reorganized and expanded with separate chapters on backpropagation and graph neural networks. Many chapters have been significantly revised over the first edition. Greater focus is placed on modern deep learning ideas such as attention mechanisms, transformers, and pre-trained language models.



Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: molto buono
Zustand: Gut | Seiten: 553 | Sprache...
Visualizza questo articolo

EUR 9,90 per la spedizione da Germania a Italia

Destinazione, tempi e costi

GRATIS per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783031296413: Neural Networks and Deep Learning: A Textbook

Edizione in evidenza

ISBN 10:  3031296419 ISBN 13:  9783031296413
Casa editrice: Springer-Nature New York Inc, 2023
Rilegato

Risultati della ricerca per Neural Networks and Deep Learning: A Textbook

Foto dell'editore

Aggarwal, Charu C.
Editore: Springer, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
Antico o usato Brossura

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Gut. Zustand: Gut | Seiten: 553 | Sprache: Englisch | Produktart: Bücher. Codice articolo 42837354/3

Contatta il venditore

Compra usato

EUR 28,25
Convertire valuta
Spese di spedizione: EUR 9,90
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

0
Editore: Springer, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
Nuovo Brossura

Da: Basi6 International, Irving, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-379549

Contatta il venditore

Compra nuovo

EUR 50,14
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 8 disponibili

Aggiungi al carrello

Foto dell'editore

Aggarwal, Charu C.
Editore: Springer, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
Nuovo Brossura

Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-283369

Contatta il venditore

Compra nuovo

EUR 50,14
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Aggarwal, Charu C
Editore: Springer Verlag GmbH, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Codice articolo 1402956145

Contatta il venditore

Compra nuovo

EUR 47,23
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Aggarwal, Charu C.
Editore: Springer, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26402088353

Contatta il venditore

Compra nuovo

EUR 50,35
Convertire valuta
Spese di spedizione: EUR 7,68
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Charu C. Aggarwal
Editore: Springer, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
Nuovo PAP

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo S0-9783031296444

Contatta il venditore

Compra nuovo

EUR 51,61
Convertire valuta
Spese di spedizione: EUR 6,78
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Aggarwal, Charu C.
Editore: Springer, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
Nuovo Brossura

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 394321534

Contatta il venditore

Compra nuovo

EUR 49,44
Convertire valuta
Spese di spedizione: EUR 10,36
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Aggarwal, Charu C.
Editore: Springer, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
Nuovo Brossura

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 18402088363

Contatta il venditore

Compra nuovo

EUR 54,52
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Charu C. Aggarwal
ISBN 10: 3031296443 ISBN 13: 9783031296444
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work When do they work better than off-the-shelf machine-learning models When is depth useful Why is training neural networks so hard What are the pitfalls The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems.Deep learning methods for various data domains, such as text, images, and graphs are presented in detail. The chapters of this book span three categories:The basics of neural networks:The backpropagation algorithm is discussed in Chapter 2.Many traditional machine learning models can be understood as special cases of neural networks. Chapter 3 explores the connections between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks.Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 4 and 5. Chapters 6 and 7 present radial-basis function (RBF) networks and restricted Boltzmann machines.Advanced topics in neural networks: Chapters 8, 9, and 10 discussrecurrent neural networks, convolutional neural networks, and graph neural networks.Several advanced topics like deep reinforcement learning, attention mechanisms, transformer networks, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 11 and 12.The textbook is written for graduate students and upper under graduate level students. Researchers and practitioners working within this related field will want to purchase this as well.Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.The second edition is substantially reorganized and expanded with separate chapters on backpropagation and graph neural networks. Many chapters have been significantly revised over the first edition.Greater focus is placed on modern deep learning ideas such as attention mechanisms, transformers, and pre-trained language models. 556 pp. Englisch. Codice articolo 9783031296444

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Aggarwal, Charu C. (Author)
Editore: Springer, 2024
ISBN 10: 3031296443 ISBN 13: 9783031296444
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 2nd edition. 553 pages. 10.00x7.00x10.00 inches. In Stock. Codice articolo __3031296443

Contatta il venditore

Compra nuovo

EUR 54,25
Convertire valuta
Spese di spedizione: EUR 11,71
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 2 copie di questo libro

Vedi tutti i risultati per questo libro