Articoli correlati a Enhancing Surrogate-based Optimization Through Parallelizati...

Enhancing Surrogate-based Optimization Through Parallelization: 1099 - Rilegato

 
9783031306082: Enhancing Surrogate-based Optimization Through Parallelization: 1099

Sinossi

This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.

Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.

Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Dalla quarta di copertina

This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.

Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.

Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer Nature
  • Data di pubblicazione2023
  • ISBN 10 3031306082
  • ISBN 13 9783031306082
  • RilegaturaCopertina rigida
  • LinguaInglese
  • Numero di pagine128
  • Contatto del produttorenon disponibile

Compra usato

Zustand: Hervorragend | Seiten:...
Visualizza questo articolo

GRATIS per la spedizione da Germania a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783031306105: Enhancing Surrogate-Based Optimization Through Parallelization

Edizione in evidenza

ISBN 10:  3031306104 ISBN 13:  9783031306105
Casa editrice: Springer, 2023
Brossura

Risultati della ricerca per Enhancing Surrogate-based Optimization Through Parallelizati...

Foto dell'editore

Frederik Rehbach
ISBN 10: 3031306082 ISBN 13: 9783031306082
Antico o usato Rilegato

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Hervorragend. Zustand: Hervorragend | Seiten: 128 | Sprache: Englisch | Produktart: Bücher. Codice articolo 41769024/1

Contatta il venditore

Compra usato

EUR 82,58
Convertire valuta
Spese di spedizione: GRATIS
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Rehbach, Frederik
ISBN 10: 3031306082 ISBN 13: 9783031306082
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (S. Codice articolo 834045565

Contatta il venditore

Compra nuovo

EUR 153,73
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Frederik Rehbach
ISBN 10: 3031306082 ISBN 13: 9783031306082
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently. 128 pp. Englisch. Codice articolo 9783031306082

Contatta il venditore

Compra nuovo

EUR 181,89
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Frederik Rehbach
ISBN 10: 3031306082 ISBN 13: 9783031306082
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently. Codice articolo 9783031306082

Contatta il venditore

Compra nuovo

EUR 181,89
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Frederik Rehbach
ISBN 10: 3031306082 ISBN 13: 9783031306082
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 128 pp. Englisch. Codice articolo 9783031306082

Contatta il venditore

Compra nuovo

EUR 181,89
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Rehbach, Frederik
Editore: Springer, 2023
ISBN 10: 3031306082 ISBN 13: 9783031306082
Nuovo Rilegato

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9783031306082

Contatta il venditore

Compra nuovo

EUR 213,72
Convertire valuta
Spese di spedizione: EUR 7,88
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Rehbach, Frederik
Editore: Springer, 2023
ISBN 10: 3031306082 ISBN 13: 9783031306082
Nuovo Rilegato

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26396027613

Contatta il venditore

Compra nuovo

EUR 231,83
Convertire valuta
Spese di spedizione: EUR 7,88
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Rehbach, Frederik
Editore: Springer, 2023
ISBN 10: 3031306082 ISBN 13: 9783031306082
Nuovo Rilegato
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo 401430786

Contatta il venditore

Compra nuovo

EUR 239,46
Convertire valuta
Spese di spedizione: EUR 10,50
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Rehbach, Frederik
Editore: Springer, 2023
ISBN 10: 3031306082 ISBN 13: 9783031306082
Nuovo Rilegato
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND. Codice articolo 18396027607

Contatta il venditore

Compra nuovo

EUR 246,39
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Rehbach, Frederik
Editore: Springer Nature, 2023
ISBN 10: 3031306082 ISBN 13: 9783031306082
Nuovo Rilegato

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Brand New. 125 pages. 9.25x6.10x0.51 inches. In Stock. Codice articolo x-3031306082

Contatta il venditore

Compra nuovo

EUR 275,97
Convertire valuta
Spese di spedizione: EUR 11,86
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 1 copie di questo libro

Vedi tutti i risultati per questo libro