Articoli correlati a Deep Learning for Fluid Simulation and Animation: Fundamenta...

Deep Learning for Fluid Simulation and Animation: Fundamentals, Modeling, and Case Studies - Brossura

 
9783031423321: Deep Learning for Fluid Simulation and Animation: Fundamentals, Modeling, and Case Studies

Sinossi

This book is an introduction to the use of machine learning and data-driven approaches in fluid simulation and animation, as an alternative to traditional modeling techniques based on partial differential equations and numerical methods – and at a lower computational cost.

This work starts with a brief review of computability theory, aimed to convince the reader – more specifically, researchers of more traditional areas of mathematical modeling – about the power of neural computing in fluid animations. In these initial chapters, fluid modeling through Navier-Stokes equations and numerical methods are also discussed.

The following chapters explore the advantages of the neural networks approach and show the building blocks of neural networks for fluid simulation. They cover aspects related to training data, data augmentation, and testing. 

The volume completes with two case studies, one involving Lagrangian simulation of fluids using convolutional neural networks and the other using Generative Adversarial Networks (GANs) approaches.


Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Gilson Antonio Giraldi is a Researcher at the National Laboratory for Scientific Computing (LNCC), Brazil, where he is responsible for academic research projects in image analysis, statistical and machine learning, scientific visualization, and physically-based animation. He holds a PhD in Computer Graphics (2000) from the Federal University of Rio de Janeiro, Brazil, and has a degree in Mathematics (1986) from the Pontifical Catholic University of Campinas, Brazil.


Antonio Lopes Apolinário Junior is an Associate Professor at the Federal University of Bahia (UFBA), Brazil. He holds a PhD in Systems and Computer Engineering (2004) from the Federal University of Rio de Janeiro, Brazil. His research interests lie in computer graphics, 3D modeling, augmented reality, virtual reality, and physically-based rendering and animation.

Leandro Tavares da Silva is a Professor at the Federal Center for Technological Education “Celso Suckow da Fonseca” (CEFET-RJ), Brazil. He holds a PhD in Computational Modeling (2016) from the National Laboratory for Scientific Computing (LNCC), Brazil. He currently does research on fluid simulation and animation, and deep learning. 

Liliane Rodrigues de Almeida is a Fellow Researcher at the National Laboratory for Scientific Computing (LNCC). She holds a Master’s degree in Computer Science (2017) from the Federal University of Juiz de Fora (UFJF), Brazil, and has a degree in Computer Science from the same university. Her fields of research are physical simulation and computational geometry.

Dalla quarta di copertina

This book is an introduction to the use of machine learning and data-driven approaches in fluid simulation and animation, as an alternative to traditional modeling techniques based on partial differential equations and numerical methods – and at a lower computational cost.

This work starts with a brief review of computability theory, aimed to convince the reader – more specifically, researchers of more traditional areas of mathematical modeling – about the power of neural computing in fluid animations. In these initial chapters, fluid modeling through Navier-Stokes equations and numerical methods are also discussed.

The following chapters explore the advantages of the neural networks approach and show the building blocks of neural networks for fluid simulation. They cover aspects related to training data, data augmentation, and testing. 

The volume completes with two case studies, one involving Lagrangian simulation of fluids using convolutional neural networks and the other using Generative Adversarial Networks (GANs) approaches.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Zustand: Hervorragend | Sprache...
Visualizza questo articolo

EUR 105,00 per la spedizione da Germania a U.S.A.

Destinazione, tempi e costi

Risultati della ricerca per Deep Learning for Fluid Simulation and Animation: Fundamenta...

Foto dell'editore

Giraldi, Gilson Antonio; Almeida, Liliane Rodrigues De; Apolinário Jr., Antonio Lopes; Silva, Leandro Tavares Da
Editore: Springer, 2023
ISBN 10: 3031423321 ISBN 13: 9783031423321
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 176. Codice articolo 26398554383

Contatta il venditore

Compra nuovo

EUR 44,69
Convertire valuta
Spese di spedizione: EUR 3,43
In U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Giraldi, Gilson Antonio; Almeida, Liliane Rodrigues De; Apolinário Jr., Antonio Lopes; Silva, Leandro Tavares Da
Editore: Springer, 2023
ISBN 10: 3031423321 ISBN 13: 9783031423321
Nuovo Brossura

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 176. Codice articolo 18398554373

Contatta il venditore

Compra nuovo

EUR 45,64
Convertire valuta
Spese di spedizione: EUR 9,95
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Gilson Antonio Giraldi
ISBN 10: 3031423321 ISBN 13: 9783031423321
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is an introduction to the use of machine learning and data-driven approaches in fluid simulation and animation, as an alternative to traditional modeling techniques based on partial differential equations and numerical methods - and at a lower computational cost.This work starts with a brief review of computability theory, aimed to convince the reader - more specifically, researchers of more traditional areas of mathematical modeling - about the power of neural computing in fluid animations. In these initial chapters, fluid modeling through Navier-Stokes equations and numerical methods are also discussed.The following chapters explore the advantages of the neural networks approach and show the building blocks of neural networks for fluid simulation. They cover aspects related to training data, data augmentation, and testing.The volume completes with two case studies, one involving Lagrangian simulation of fluids using convolutional neural networks and the other using Generative Adversarial Networks (GANs) approaches. 164 pp. Englisch. Codice articolo 9783031423321

Contatta il venditore

Compra nuovo

EUR 48,14
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Gilson Antonio Giraldi|Liliane Rodrigues de Almeida|Antonio Lopes Apolinário Jr.|Leandro Tavares da Silva
ISBN 10: 3031423321 ISBN 13: 9783031423321
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Discloses the use of machine learning in fluid simulation as an option of lower computational costOffers a comparison between two neural network approaches and corresponding modelsIntended for students and researchers who need to keep pace . Codice articolo 945398630

Contatta il venditore

Compra nuovo

EUR 43,98
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Gilson Antonio Giraldi
ISBN 10: 3031423321 ISBN 13: 9783031423321
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -This book is an introduction to the use of machine learning and data-driven approaches in fluid simulation and animation, as an alternative to traditional modeling techniques based on partial differential equations and numerical methods ¿ and at a lower computational cost.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 180 pp. Englisch. Codice articolo 9783031423321

Contatta il venditore

Compra nuovo

EUR 48,14
Convertire valuta
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Gilson Antonio Giraldi
ISBN 10: 3031423321 ISBN 13: 9783031423321
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is an introduction to the use of machine learning and data-driven approaches in fluid simulation and animation, as an alternative to traditional modeling techniques based on partial differential equations and numerical methods - and at a lower computational cost.This work starts with a brief review of computability theory, aimed to convince the reader - more specifically, researchers of more traditional areas of mathematical modeling - about the power of neural computing in fluid animations. In these initial chapters, fluid modeling through Navier-Stokes equations and numerical methods are also discussed.The following chapters explore the advantages of the neural networks approach and show the building blocks of neural networks for fluid simulation. They cover aspects related to training data, data augmentation, and testing.The volume completes with two case studies, one involving Lagrangian simulation of fluids using convolutional neural networks and the other using Generative Adversarial Networks (GANs) approaches. Codice articolo 9783031423321

Contatta il venditore

Compra nuovo

EUR 48,14
Convertire valuta
Spese di spedizione: EUR 61,42
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Giraldi, Gilson Antonio; Almeida, Liliane Rodrigues de; Apolinário Jr., Antonio Lopes; Silva, Leandro Tavares da
Editore: Springer, 2023
ISBN 10: 3031423321 ISBN 13: 9783031423321
Antico o usato Brossura

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. Codice articolo 42808253/1

Contatta il venditore

Compra usato

EUR 16,68
Convertire valuta
Spese di spedizione: EUR 105,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello