Articoli correlati a Manifold Learning: Model Reduction in Engineering (SpringerB...

Manifold Learning: Model Reduction in Engineering (SpringerBriefs in Computer Science) - Rilegato

 
9783031527630: Manifold Learning: Model Reduction in Engineering (SpringerBriefs in Computer Science)

Al momento non sono disponibili copie per questo codice ISBN.

Sinossi

This Open Access book reviews recent theoretical and numerical developments in nonlinear model order reduction in continuum mechanics, being addressed to Master and PhD students, as well as to researchers, lecturers and instructors. The aim of the authors is to provide tools for a better understanding and implement reduced order models by using: physics-based models, synthetic data forecast by these models, experimental data and deep learning algorithms. The book involves a survey of key methods of model order reduction applied to model-based engineering and digital twining, by learning linear or nonlinear latent spaces.


Projection-based reduced order models are the projection of mechanical equations on a latent space that have been learnt from both synthetic data and experimental data. Various descriptions and representations of structured data for model reduction are presented in the applications and survey chapters. Image-based digital twins are developed in a reduced setting. Reduced order models of as-manufactured components predict the mechanical effects of shape variations. A similar workflow is extended to multiphysics or coupled problems, with high dimensional input fields. Practical techniques are proposed for data augmentation and also for hyper-reduction, which is a key point to speed up projection-based model order reduction of finite element models.

The book gives access to python libraries available on gitlab.com, which have been developed as part of the research program [FUI-25] MORDICUS funded by the French government. Similarly to deep learning for computer vision, deep learning for model order reduction circumvents the need to design parametric problems prior reducing models. Such an approach is highly relevant for image-base modelling or multiphysics modelling.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

David Ryckelynck is working on model-based/physics-based engineering assisted by machine learning. He did seminal works on hyper-reduction methods, in the field of applied mathematics and computational mechanics. He is the head of a lecture on Ingénierie Digitale Des Systemes Complexes (Data Science for Computational Engineering) at Mines Paris PSL University.


Fabien Casenave is a research scientist at Safran Tech, the research center of Safran Group, a French multinational company that designs, develops and manufactures aircraft engines, rocket engines as well as various aerospace and defense-related equipment or their components. As head of the Physics-Informed AI and Numerical Experiments team, Fabien has been working on model-based/physics-based engineering assisted by machine learning applied to industrial design challenges in structural mechanics.

Nissrine Akkari is a research scientist at Safran Tech. She has been working on model-based/physics-based engineering assisted by machine learning applied to industrial design challenges in computational fluid dynamics.

Dalla quarta di copertina

This Open Access book reviews recent theoretical and numerical developments in nonlinear model order reduction in continuum mechanics, being addressed to Master and PhD students, as well as to researchers, lecturers and instructors. The aim of the authors is to provide tools for a better understanding and implement reduced order models by using: physics-based models, synthetic data forecast by these models, experimental data and deep learning algorithms. The book involves a survey of key methods of model order reduction applied to model-based engineering and digital twining, by learning linear or nonlinear latent spaces.


Projection-based reduced order models are the projection of mechanical equations on a latent space that have been learnt from both synthetic data and experimental data. Various descriptions and representations of structured data for model reduction are presented in the applications and survey chapters. Image-based digital twins are developed in a reduced setting. Reduced order models of as-manufactured components predict the mechanical effects of shape variations. A similar workflow is extended to multiphysics or coupled problems, with high dimensional input fields. Practical techniques are proposed for data augmentation and also for hyper-reduction, which is a key point to speed up projection-based model order reduction of finite element models.

The book gives access to python libraries available on gitlab.com, which have been developed as part of the research program [FUI-25] MORDICUS funded by the French government. Similarly to deep learning for computer vision, deep learning for model order reduction circumvents the need to design parametric problems prior reducing models. Such an approach is highly relevant for image-base modelling or multiphysics modelling.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

(nessuna copia disponibile)

Cerca:



Inserisci un desiderata

Non riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!

Inserisci un desiderata

Altre edizioni note dello stesso titolo

9783031527661: Manifold Learning: Model Reduction in Engineering

Edizione in evidenza

ISBN 10:  3031527666 ISBN 13:  9783031527661
Casa editrice: Springer, 2024
Brossura