Articoli correlati a Probability and Statistics for Machine Learning: A...

Probability and Statistics for Machine Learning: A Textbook - Rilegato

 
9783031532818: Probability and Statistics for Machine Learning: A Textbook

Sinossi

This book covers probability and statistics from the machine learning perspective. The chapters of this book belong to three categories:

1. The basics of probability and statistics: These chapters focus on the basics of probability and statistics, and cover the key principles of these topics. Chapter 1 provides an overview of the area of probability and statistics as well as its relationship to machine learning. The fundamentals of probability and statistics are covered in Chapters 2 through 5.

2. From probability to machine learning: Many machine learning applications are addressed using probabilistic models, whose parameters are then learned in a data-driven manner. Chapters 6 through 9 explore how different models from probability and statistics are applied to machine learning. Perhaps the most important tool that bridges the gap from data to probability is maximum-likelihood estimation, which is a foundational concept from the perspective of machine learning. This concept is explored repeatedly in these chapters.

3. Advanced topics: Chapter 10 is devoted to discrete-state Markov processes. It explores the application of probability and statistics to a temporal and sequential setting, although the applications extend to more complex settings such as graphical data. Chapter 11 covers a number of probabilistic inequalities and approximations.

The style of writing promotes the learning of probability and statistics simultaneously with a probabilistic perspective on the modeling of machine learning applications. The book contains over 200 worked examples in order to elucidate key concepts. Exercises are included both within the text of the chapters and at the end of the chapters. The book is written for a broad audience, including graduate students, researchers, and practitioners.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his undergraduate degree in Computer Science from the Indian Institute of Technology at Kanpur in 1993 and his Ph.D. in Operations Research from the Massachusetts Institute of Technology in 1996. He has published more than 400 papers in refereed conferences and journals, and has applied for or been granted more than 80 patents. He is author or editor of 20 books, including textbooks on linear algebra, machine learning, neural networks, and outlier analysis. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM. He has received several awards, including the EDBT Test-of-Time Award (2014), the ACM SIGKDD Innovation Award (2019), the IEEE ICDM Research Contributions Award (2015), and the IIT Kanpur Distinguished Alumnus Award (2023).He is also a recipient of the W. Wallace McDowell Award, the highest award given solely by the IEEE Computer Society across the field of computer science. He has served as an editor-in-chief of ACM Books and is currently serving as an editor-in-chief of the ACM Transactions on Knowledge Discovery from Data. He is a fellow of the SIAM, ACM, and the IEEE, for

“contributions to knowledge discovery and data mining algorithms.”

Dalla quarta di copertina

This book covers probability and statistics from the machine learning perspective. The chapters of this book belong to three categories:

1. The basics of probability and statistics: These chapters focus on the basics of probability and statistics, and cover the key principles of these topics. Chapter 1 provides an overview of the area of probability and statistics as well as its relationship to machine learning. The fundamentals of probability and statistics are covered in Chapters 2 through 5.

2. From probability to machine learning: Many machine learning applications are addressed using probabilistic models, whose parameters are then learned in a data-driven manner. Chapters 6 through 9 explore how different models from probability and statistics are applied to machine learning. Perhaps the most important tool that bridges the gap from data to probability is maximum-likelihood estimation, which is a foundational concept from the perspective of machine learning. This concept is explored repeatedly in these chapters.

3. Advanced topics: Chapter 10 is devoted to discrete-state Markov processes. It explores the application of probability and statistics to a temporal and sequential setting, although the applications extend to more complex settings such as graphical data. Chapter 11 covers a number of probabilistic inequalities and approximations.

The style of writing promotes the learning of probability and statistics simultaneously with a probabilistic perspective on the modeling of machine learning applications. The book contains over 200 worked examples in order to elucidate key concepts. Exercises are included both within the text of the chapters and at the end of the chapters. The book is written for a broad audience, including graduate students, researchers, and practitioners.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 2,25 per la spedizione in U.S.A.

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783031532849: Probability and Statistics for Machine Learning: A Textbook

Edizione in evidenza

ISBN 10:  3031532848 ISBN 13:  9783031532849
Casa editrice: Springer Nature, 2025
Brossura

Risultati della ricerca per Probability and Statistics for Machine Learning: A...

Immagini fornite dal venditore

Aggarwal, Charu C.
Editore: Springer, 2024
ISBN 10: 3031532813 ISBN 13: 9783031532818
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 47426101-n

Contatta il venditore

Compra nuovo

EUR 72,23
Convertire valuta
Spese di spedizione: EUR 2,25
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Aggarwal, Charu C.
Editore: Springer, 2024
ISBN 10: 3031532813 ISBN 13: 9783031532818
Nuovo Rilegato

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9783031532818

Contatta il venditore

Compra nuovo

EUR 74,55
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Aggarwal, Charu C.
Editore: Springer, 2024
ISBN 10: 3031532813 ISBN 13: 9783031532818
Antico o usato Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 47426101

Contatta il venditore

Compra usato

EUR 77,43
Convertire valuta
Spese di spedizione: EUR 2,25
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Charu C. Aggarwal
ISBN 10: 3031532813 ISBN 13: 9783031532818
Nuovo Rilegato

Da: Rarewaves USA, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardback. Condizione: New. 2024 ed. Codice articolo LU-9783031532818

Contatta il venditore

Compra nuovo

EUR 97,94
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Charu C. Aggarwal
ISBN 10: 3031532813 ISBN 13: 9783031532818
Nuovo Rilegato

Da: Grand Eagle Retail, Mason, OH, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. This book covers probability and statistics from the machine learning perspective. The chapters of this book belong to three categories:1. The basics of probability and statistics: These chapters focus on the basics of probability and statistics, and cover the key principles of these topics. Chapter 1 provides an overview of the area of probability and statistics as well as its relationship to machine learning. The fundamentals of probability and statistics are covered in Chapters 2 through 5.2. From probability to machine learning: Many machine learning applications are addressed using probabilistic models, whose parameters are then learned in a data-driven manner. Chapters 6 through 9 explore how different models from probability and statistics are applied to machine learning. Perhaps the most important tool that bridges the gap from data to probability is maximum-likelihood estimation, which is a foundational concept from the perspective of machine learning. This concept is explored repeatedly in these chapters.3. Advanced topics: Chapter 10 is devoted to discrete-state Markov processes. It explores the application of probability and statistics to a temporal and sequential setting, although the applications extend to more complex settings such as graphical data. Chapter 11 covers a number of probabilistic inequalities and approximations.The style of writing promotes the learning of probability and statistics simultaneously with a probabilistic perspective on the modeling of machine learning applications. The book contains over 200 worked examples in order to elucidate key concepts. Exercises are included both within the text of the chapters and at the end of the chapters. The book is written for a broad audience, including graduate students, researchers, and practitioners. This book covers probability and statistics from the machine learning perspective. From probability to machine learning: Many machine learning applications are addressed using probabilistic models, whose parameters are then learned in a data-driven manner. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783031532818

Contatta il venditore

Compra nuovo

EUR 99,80
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Aggarwal, Charu C.
Editore: Springer, 2024
ISBN 10: 3031532813 ISBN 13: 9783031532818
Nuovo Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 47426101-n

Contatta il venditore

Compra nuovo

EUR 85,08
Convertire valuta
Spese di spedizione: EUR 17,18
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Aggarwal, Charu C.
Editore: Springer, 2024
ISBN 10: 3031532813 ISBN 13: 9783031532818
Antico o usato Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 47426101

Contatta il venditore

Compra usato

EUR 85,29
Convertire valuta
Spese di spedizione: EUR 17,18
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Aggarwal Charu, C.:
Editore: Springer, 2024
ISBN 10: 3031532813 ISBN 13: 9783031532818
Antico o usato Rilegato

Da: Studibuch, Stuttgart, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

hardcover. Condizione: Sehr gut. 540 Seiten; 9783031532818.2 Gewicht in Gramm: 2. Codice articolo 956703

Contatta il venditore

Compra usato

EUR 44,22
Convertire valuta
Spese di spedizione: EUR 61,50
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Aggarwal, Charu C.
Editore: Springer, 2024
ISBN 10: 3031532813 ISBN 13: 9783031532818
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783031532818_new

Contatta il venditore

Compra nuovo

EUR 102,90
Convertire valuta
Spese di spedizione: EUR 13,72
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Charu C. Aggarwal
ISBN 10: 3031532813 ISBN 13: 9783031532818
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book covers probability and statistics from the machine learning perspective. Thechapters of this book belong to three categories:1. The basics of probability and statistics: These chapters focus on the basics of probability and statistics, and cover the key principles of these topics. Chapter 1 provides an overview of the area of probability and statistics as well as its relationship to machine learning. The fundamentals of probability and statistics are covered in Chapters 2 through 5.2. From probability to machine learning: Many machine learning applications are addressed using probabilistic models, whose parameters are then learned in a data-driven manner. Chapters 6 through 9 explore how different models from probability and statistics are applied to machine learning. Perhaps the most important tool that bridges the gap from data to probability is maximum-likelihood estimation, which is a foundational concept from the perspective of machine learning. This concept is explored repeatedly in these chapters.3. Advanced topics: Chapter 10 is devoted to discrete-state Markov processes. It explores the application of probability and statistics to a temporal and sequential setting, although the applications extend to more complex settings such as graphical data. Chapter 11 covers a number of probabilistic inequalities and approximations.The style of writing promotes the learning of probability and statistics simultaneously witha probabilistic perspective on the modeling of machine learning applications. The book contains over 200 worked examples in order to elucidate key concepts. Exercises are included both within the text of the chapters and at the end of the chapters. The book is written for a broad audience, including graduate students, researchers, and practitioners. 522 pp. Englisch. Codice articolo 9783031532818

Contatta il venditore

Compra nuovo

EUR 96,29
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 11 copie di questo libro

Vedi tutti i risultati per questo libro