Articoli correlati a Privacy Preservation in Distributed Systems: Algorithms...

Privacy Preservation in Distributed Systems: Algorithms and Applications - Rilegato

 
9783031580123: Privacy Preservation in Distributed Systems: Algorithms and Applications

Sinossi

This book provides a discussion of privacy in the following three parts: Privacy Issues in Data Aggregation; Privacy Issues in Indoor Localization; and Privacy-Preserving Offloading in MEC. In Part 1, the book proposes LocMIA, which shifts from membership inference attacks against aggregated location data to a binary classification problem, synthesizing privacy preserving traces by enhancing the plausibility of synthetic traces with social networks. In Part 2, the book highlights Indoor Localization to propose a lightweight scheme that can protect both location privacy and data privacy of LS. In Part 3, it investigates the tradeoff between computation rate and privacy protection for task offloading a multi-user MEC system, and verifies that the proposed load balancing strategy improves the computing service capability of the MEC system. In summary, all the algorithms discussed in this book are of great significance in demonstrating the importance of privacy.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Guanglin Zhang received the B.S. degree in Applied Mathematics from Shandong Normal University, Jinan, China, in 2003, the M.S. degree in Operational Research and Cybernetics from Shanghai University, Shanghai, China, in 2006, and the Ph.D. degree in Information and Communication Engineering from Shanghai Jiao Tong University, Shanghai, in 2012. From 2013 to 2014, he was a Post-Doctoral Research Associate with the Institute of Network Coding, The Chinese University of Hong Kong. He joined Donghua University, as an Associate Professor, in 2014, and was promoted to Full Professor in 2017. From 2015 to 2021, he was the Department Chair of Communication Engineering. From 2020 to 2023, he was the Associate Dean of the College of Information Science and Technology, Donghua University. He is currently the Special Appointment Eastern Scholar Professor, the Director of the Office of Talent Affairs, and an Associate Director of the Department of Human Resources, Donghua University. His research interests include online algorithms, capacity scaling of wireless networks, vehicular networks, smart microgrids, and mobile edge computing. He serves as a Technical Program Committee Member for IEEE GLOBECOM 2016–2017, IEEE ICC 2014, 2015, and 2017, IEEE VTC 2017 Fall, IEEE/CIC ICCC 2014, WCSP 2014, APCC 2013, and WASA 2012. He serves as the Local Arrangement Chair for ACM TURC 2017 and the Vice TPC Co-Chair for ACM TURC 2018. He serves as an Editor on the Editorial Board for China Communications. He is an Associate Editor for the Journal of Computers and Electrical Engineering.

Ping Zhao received the Ph.D. degree from School of Electronic Information and Communications, Huazhong University of Science and Technology in 2018. Thereafter, she joined the faculty of Donghua University where she is currently an associate professor. Her research interests are in the area of wireless communication networking, mobile computing, and data security. She served a Guest Editor of International Distributed Sensor Network 2020, the Web Chair and Publication Chair of International Conference on Edge Computing and IoT: Systems, Management and Security 2020 and 2022, and the Vice Technical Program Co-Chairs of International Symposium on Computing and Artificial Intelligence 2023. She received the ACM Wuhan Doctoral Dissertation Award in 2019, and the Excellent Reviewer For IEEE Transactions on Network Science and Engineering in 2022.

Anqi Zhang received the Master degree from Donghua University in 2021. She is currently pursuing the Ph.D. degree in the College of Information Science and Technology, Donghua University. Her research interests include the area of wireless communication networking, attack and defense in machine learning and data privacy. Mainly focus on the privacy and robustness in federated learning.

Dalla quarta di copertina

This book provides a discussion of privacy in the following three parts: Privacy Issues in Data Aggregation; Privacy Issues in Indoor Localization; and Privacy-Preserving Offloading in MEC. In Part 1, the book proposes LocMIA, which shifts from membership inference attacks against aggregated location data to a binary classification problem, synthesizing privacy preserving traces by enhancing the plausibility of synthetic traces with social networks. In Part 2, the book highlights Indoor Localization to propose a lightweight scheme that can protect both location privacy and data privacy of LS. In Part 3, it investigates the tradeoff between computation rate and privacy protection for task offloading a multi-user MEC system, and verifies that the proposed load balancing strategy improves the computing service capability of the MEC system. In summary, all the algorithms discussed in this book are of great significance in demonstrating the importance of privacy.

  • Addresses privacy concerns related to Data Aggregation, Indoor Localization, and Mobile Edge Computing;
  • Introduces innovative solutions and algorithms to tackle privacy challenges;
  • Offers readers a forward-looking perspective into future developments and challenges in privacy research.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Risultati della ricerca per Privacy Preservation in Distributed Systems: Algorithms...

Foto dell'editore

Zhang, Guanglin; Zhao, Ping; Zhang, Anqi
Editore: Springer, 2024
ISBN 10: 3031580125 ISBN 13: 9783031580123
Nuovo Rilegato

Da: Best Price, Torrance, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783031580123

Contatta il venditore

Compra nuovo

EUR 148,20
Convertire valuta
Spese di spedizione: EUR 7,65
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Zhang, Guanglin; Zhao, Ping; Zhang, Anqi
Editore: Springer, 2024
ISBN 10: 3031580125 ISBN 13: 9783031580123
Nuovo Rilegato

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9783031580123

Contatta il venditore

Compra nuovo

EUR 177,30
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Zhang, Guanglin; Zhao, Ping; Zhang, Anqi
Editore: Springer, 2024
ISBN 10: 3031580125 ISBN 13: 9783031580123
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783031580123_new

Contatta il venditore

Compra nuovo

EUR 165,67
Convertire valuta
Spese di spedizione: EUR 13,84
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Guanglin Zhang
ISBN 10: 3031580125 ISBN 13: 9783031580123
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a discussion of privacy in the following three parts: Privacy Issues in Data Aggregation; Privacy Issues in Indoor Localization; and Privacy-Preserving Offloading in MEC. In Part 1, the book proposes LocMIA, which shifts from membership inference attacks against aggregated location data to a binary classification problem, synthesizing privacy preserving traces by enhancing the plausibility of synthetic traces with social networks. In Part 2, the book highlights Indoor Localization to propose a lightweight scheme that can protect both location privacy and data privacy of LS. In Part 3, it investigates the tradeoff between computation rate and privacy protection for task offloading a multi-user MEC system, and verifies that the proposed load balancing strategy improves the computing service capability of the MEC system. In summary, all the algorithms discussed in this book are of great significance in demonstrating the importance of privacy. 256 pp. Englisch. Codice articolo 9783031580123

Contatta il venditore

Compra nuovo

EUR 160,49
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Zhang, Guanglin|Zhao, Ping|Zhang, Anqi
ISBN 10: 3031580125 ISBN 13: 9783031580123
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book provides a discussion of privacy in the following three parts: Privacy Issues in Data Aggregation Privacy Issues in Indoor Localization and Privacy-Preserving Offloading in MEC. In Part 1, the book proposes LocMIA, which shifts from membershi. Codice articolo 1462973751

Contatta il venditore

Compra nuovo

EUR 136,16
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Zhang, Guanglin; Zhao, Ping; Zhang, Anqi
Editore: Springer, 2024
ISBN 10: 3031580125 ISBN 13: 9783031580123
Nuovo Rilegato

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 2024th edition NO-PA16APR2015-KAP. Codice articolo 26401170656

Contatta il venditore

Compra nuovo

EUR 207,51
Convertire valuta
Spese di spedizione: EUR 3,40
In U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Guanglin Zhang
ISBN 10: 3031580125 ISBN 13: 9783031580123
Nuovo Rilegato

Da: CitiRetail, Stevenage, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. This book provides a discussion of privacy in the following three parts: Privacy Issues in Data Aggregation; Privacy Issues in Indoor Localization; and Privacy-Preserving Offloading in MEC. In Part 1, the book proposes LocMIA, which shifts from membership inference attacks against aggregated location data to a binary classification problem, synthesizing privacy preserving traces by enhancing the plausibility of synthetic traces with social networks. In Part 2, the book highlights Indoor Localization to propose a lightweight scheme that can protect both location privacy and data privacy of LS. In Part 3, it investigates the tradeoff between computation rate and privacy protection for task offloading a multi-user MEC system, and verifies that the proposed load balancing strategy improves the computing service capability of the MEC system. In summary, all the algorithms discussed in this book are of great significance in demonstrating the importance of privacy. This book provides a discussion of privacy in the following three parts: Privacy Issues in Data Aggregation; In Part 2, the book highlights Indoor Localization to propose a lightweight scheme that can protect both location privacy and data privacy of LS. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9783031580123

Contatta il venditore

Compra nuovo

EUR 174,31
Convertire valuta
Spese di spedizione: EUR 42,75
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Guanglin Zhang
ISBN 10: 3031580125 ISBN 13: 9783031580123
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -This book provides a discussion of privacy in the following three parts: Privacy Issues in Data Aggregation; Privacy Issues in Indoor Localization; and Privacy-Preserving Offloading in MEC. In Part 1, the book proposes LocMIA, which shifts from membership inference attacks against aggregated location data to a binary classification problem, synthesizing privacy preserving traces by enhancing the plausibility of synthetic traces with social networks. In Part 2, the book highlights Indoor Localization to propose a lightweight scheme that can protect both location privacy and data privacy of LS. In Part 3, it investigates the tradeoff between computation rate and privacy protection for task offloading a multi-user MEC system, and verifies that the proposed load balancing strategy improves the computing service capability of the MEC system. In summary, all the algorithms discussed in this book are of great significance in demonstrating the importance of privacy.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 272 pp. Englisch. Codice articolo 9783031580123

Contatta il venditore

Compra nuovo

EUR 160,49
Convertire valuta
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Guanglin Zhang
ISBN 10: 3031580125 ISBN 13: 9783031580123
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a discussion of privacy in the following three parts: Privacy Issues in Data Aggregation; Privacy Issues in Indoor Localization; and Privacy-Preserving Offloading in MEC. In Part 1, the book proposes LocMIA, which shifts from membership inference attacks against aggregated location data to a binary classification problem, synthesizing privacy preserving traces by enhancing the plausibility of synthetic traces with social networks. In Part 2, the book highlights Indoor Localization to propose a lightweight scheme that can protect both location privacy and data privacy of LS. In Part 3, it investigates the tradeoff between computation rate and privacy protection for task offloading a multi-user MEC system, and verifies that the proposed load balancing strategy improves the computing service capability of the MEC system. In summary, all the algorithms discussed in this book are of great significance in demonstrating the importance of privacy. Codice articolo 9783031580123

Contatta il venditore

Compra nuovo

EUR 160,49
Convertire valuta
Spese di spedizione: EUR 62,88
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Zhang, Guanglin; Zhao, Ping; Zhang, Anqi
Editore: Springer, 2024
ISBN 10: 3031580125 ISBN 13: 9783031580123
Nuovo Rilegato
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo 396287807

Contatta il venditore

Compra nuovo

EUR 217,40
Convertire valuta
Spese di spedizione: EUR 7,51
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Vedi altre 2 copie di questo libro

Vedi tutti i risultati per questo libro