Articoli correlati a Theory and Practice of Quality Assurance for Machine...

Theory and Practice of Quality Assurance for Machine Learning Systems: An Experiment-Driven Approach - Brossura

 
9783031700071: Theory and Practice of Quality Assurance for Machine Learning Systems: An Experiment-Driven Approach

Sinossi

This book is a self-contained introduction to engineering and testing machine learning (ML) systems. It systematically discusses and teaches the art of crafting and developing software systems that include and surround machine learning models. Crafting ML based systems that are business-grade is highly challenging, as it requires statistical control throughout the complete system development life cycle. To this end, the book introduces an “experiment first” approach, stressing the need to define statistical experiments from the beginning of the development life cycle and presenting methods for careful quantification of business requirements and identification of key factors that impact business requirements. Applying these methods reduces the risk of failure of an ML development project and of the resultant, deployed ML system. The presentation is complemented by numerous best practices, case studies and practical as well as theoretical exercises and their solutions, designed to facilitate understanding of the ideas, concepts and methods introduced.

The goal of this book is to empower scientists, engineers, and software developers with the knowledge and skills necessary to create robust and reliable ML software.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Samuel Ackerman earned his Ph.D. in statistics from Temple University in Philadelphia, PA, in 2018.  Since then, he has worked as a statistician and data science researcher at IBM Research Israel in Haifa, actively contributing to the development of machine learning (ML) testing and analysis methods and tools.

Guy Barash earned his M.Sc. in computer science with a focus on AI, from Bar Ilan University in 2021. His scientific research examines vulnerabilities of ML software. For eight years, he has been working in the software industry – both corporate and startup – on the design and implementation of reliable ML-based systems.

Eitan Farchi earned his Ph.D. in game theory from Haifa University in Israel, in 2000. He is a distinguished engineer at IBM Research and works on the development of methods, tools and field solutions for quality and reliability of software systems. Recently, he focused on quality and reliability of industrial strength ML-based solutions in the area of intelligent chatbot software.

Orna Raz holds a Ph.D. in Software Engineering from Carnegie Mellon University. Over the years, she has studied the quality of industrial strength software. Recently, she focused on ML-based systems and has conceptualized and developed FreaAI - a slice-based ML software analysis tool that is used for industrial ML software quality analysis.

Onn Shehory is a professor of Intelligent Information Systems at Bar Ilan University (BIU), Israel, where he also serves as the director of the Data Science and AI Institute. He has many years of both academic and industrial experience in the fields of AI and software engineering. In recent years his research focused on ML, its vulnerabilities, and methods for mitigating related risks.

Dalla quarta di copertina

This book is a self-contained introduction to engineering and testing machine learning (ML) systems. It systematically discusses and teaches the art of crafting and developing software systems that include and surround machine learning models. Crafting ML based systems that are business-grade is highly challenging, as it requires statistical control throughout the complete system development life cycle. To this end, the book introduces an “experiment first” approach, stressing the need to define statistical experiments from the beginning of the development life cycle and presenting methods for careful quantification of business requirements and identification of key factors that impact business requirements. Applying these methods reduces the risk of failure of an ML development project and of the resultant, deployed ML system. The presentation is complemented by numerous best practices, case studies and practical as well as theoretical exercises and their solutions, designed to facilitate understanding of the ideas, concepts and methods introduced.

The goal of this book is to empower scientists, engineers, and software developers with the knowledge and skills necessary to create robust and reliable ML software.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Risultati della ricerca per Theory and Practice of Quality Assurance for Machine...

Foto dell'editore

Samuel Ackerman
ISBN 10: 3031700074 ISBN 13: 9783031700071
Nuovo Paperback

Da: Grand Eagle Retail, Mason, OH, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. This book is a self-contained introduction to engineering and testing machine learning (ML) systems. It systematically discusses and teaches the art of crafting and developing software systems that include and surround machine learning models. Crafting ML based systems that are business-grade is highly challenging, as it requires statistical control throughout the complete system development life cycle. To this end, the book introduces an experiment first approach, stressing the need to define statistical experiments from the beginning of the development life cycle and presenting methods for careful quantification of business requirements and identification of key factors that impact business requirements. Applying these methods reduces the risk of failure of an ML development project and of the resultant, deployed ML system. The presentation is complemented by numerous best practices, case studies and practical as well as theoretical exercises and their solutions, designed to facilitate understanding of the ideas, concepts and methods introduced.The goal of this book is to empower scientists, engineers, and software developers with the knowledge and skills necessary to create robust and reliable ML software. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783031700071

Contatta il venditore

Compra nuovo

EUR 69,82
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Samuel Ackerman
ISBN 10: 3031700074 ISBN 13: 9783031700071
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is a self-contained introduction to engineering and testing machine learning (ML) systems. It systematically discusses and teaches the art of crafting and developing software systems that include and surround machine learning models. Crafting ML based systems that are business-grade is highly challenging, as it requires statistical control throughout the complete system development life cycle. To this end, the book introduces an 'experiment first' approach, stressing the need to define statistical experiments from the beginning of the development life cycle and presenting methods for careful quantification of business requirements and identification of key factors that impact business requirements. Applying these methods reduces the risk of failure of an ML development project and of the resultant, deployed ML system. The presentation is complemented by numerous best practices, case studies and practical as well as theoretical exercises and their solutions, designed to facilitate understanding of the ideas, concepts and methods introduced.The goal of this book is to empower scientists, engineers, and software developers with the knowledge and skills necessary to create robust and reliable ML software. 182 pp. Englisch. Codice articolo 9783031700071

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Ackerman, Samuel; Barash, Guy; Farchi, Eitan; Raz, Orna; Shehory, Onn
Editore: Springer, 2024
ISBN 10: 3031700074 ISBN 13: 9783031700071
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26402090851

Contatta il venditore

Compra nuovo

EUR 74,69
Convertire valuta
Spese di spedizione: EUR 3,42
In U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Ackerman, Samuel; Barash, Guy; Farchi, Eitan; Raz, Orna; Shehory, Onn
Editore: Springer, 2024
ISBN 10: 3031700074 ISBN 13: 9783031700071
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo 394319036

Contatta il venditore

Compra nuovo

EUR 75,95
Convertire valuta
Spese di spedizione: EUR 7,49
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Ackerman, Samuel; Barash, Guy; Farchi, Eitan; Raz, Orna; Shehory, Onn
Editore: Springer, 2024
ISBN 10: 3031700074 ISBN 13: 9783031700071
Nuovo Brossura
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND. Codice articolo 18402090857

Contatta il venditore

Compra nuovo

EUR 78,53
Convertire valuta
Spese di spedizione: EUR 9,95
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Ackerman, Samuel; Barash, Guy; Farchi, Eitan; Raz, Orna; Shehory, Onn
Editore: Springer Verlag GmbH, 2024
ISBN 10: 3031700074 ISBN 13: 9783031700071
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Codice articolo 1756047339

Contatta il venditore

Compra nuovo

EUR 47,23
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Ackerman, Samuel/ Barash, Guy/ Farchi, Eitan/ Raz, Orna/ Shehory, Onn
ISBN 10: 3031700074 ISBN 13: 9783031700071
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 194 pages. 9.44x6.61x9.45 inches. In Stock. Codice articolo x-3031700074

Contatta il venditore

Compra nuovo

EUR 77,30
Convertire valuta
Spese di spedizione: EUR 28,82
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Samuel Ackerman
ISBN 10: 3031700074 ISBN 13: 9783031700071
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -This book is a self-contained introduction to engineering and testing machine learning (ML) systems. It systematically discusses and teaches the art of crafting and developing software systems that include and surround machine learning models. Crafting ML based systems that are business-grade is highly challenging, as it requires statistical control throughout the complete system development life cycle. To this end, the book introduces an ¿experiment first¿ approach, stressing the need to define statistical experiments from the beginning of the development life cycle and presenting methods for careful quantification of business requirements and identification of key factors that impact business requirements. Applying these methods reduces the risk of failure of an ML development project and of the resultant, deployed ML system. The presentation is complemented by numerous best practices, case studies and practical as well as theoretical exercises and their solutions, designed to facilitate understanding of the ideas, concepts and methods introduced.The goal of this book is to empower scientists, engineers, and software developers with the knowledge and skills necessary to create robust and reliable ML software.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 196 pp. Englisch. Codice articolo 9783031700071

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Samuel Ackerman
ISBN 10: 3031700074 ISBN 13: 9783031700071
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is a self-contained introduction to engineering and testing machine learning (ML) systems. It systematically discusses and teaches the art of crafting and developing software systems that include and surround machine learning models. Crafting ML based systems that are business-grade is highly challenging, as it requires statistical control throughout the complete system development life cycle. To this end, the book introduces an 'experiment first' approach, stressing the need to define statistical experiments from the beginning of the development life cycle and presenting methods for careful quantification of business requirements and identification of key factors that impact business requirements. Applying these methods reduces the risk of failure of an ML development project and of the resultant, deployed ML system. The presentation is complemented by numerous best practices, case studies and practical as well as theoretical exercises and their solutions, designed to facilitate understanding of the ideas, concepts and methods introduced.The goal of this book is to empower scientists, engineers, and software developers with the knowledge and skills necessary to create robust and reliable ML software. Codice articolo 9783031700071

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 61,70
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello