This book is a self-contained introduction to engineering and testing machine learning (ML) systems. It systematically discusses and teaches the art of crafting and developing software systems that include and surround machine learning models. Crafting ML based systems that are business-grade is highly challenging, as it requires statistical control throughout the complete system development life cycle. To this end, the book introduces an “experiment first” approach, stressing the need to define statistical experiments from the beginning of the development life cycle and presenting methods for careful quantification of business requirements and identification of key factors that impact business requirements. Applying these methods reduces the risk of failure of an ML development project and of the resultant, deployed ML system. The presentation is complemented by numerous best practices, case studies and practical as well as theoretical exercises and their solutions, designed to facilitate understanding of the ideas, concepts and methods introduced.
The goal of this book is to empower scientists, engineers, and software developers with the knowledge and skills necessary to create robust and reliable ML software.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Samuel Ackerman earned his Ph.D. in statistics from Temple University in Philadelphia, PA, in 2018. Since then, he has worked as a statistician and data science researcher at IBM Research Israel in Haifa, actively contributing to the development of machine learning (ML) testing and analysis methods and tools.
Guy Barash earned his M.Sc. in computer science with a focus on AI, from Bar Ilan University in 2021. His scientific research examines vulnerabilities of ML software. For eight years, he has been working in the software industry – both corporate and startup – on the design and implementation of reliable ML-based systems.
Eitan Farchi earned his Ph.D. in game theory from Haifa University in Israel, in 2000. He is a distinguished engineer at IBM Research and works on the development of methods, tools and field solutions for quality and reliability of software systems. Recently, he focused on quality and reliability of industrial strength ML-based solutions in the area of intelligent chatbot software.
Orna Raz holds a Ph.D. in Software Engineering from Carnegie Mellon University. Over the years, she has studied the quality of industrial strength software. Recently, she focused on ML-based systems and has conceptualized and developed FreaAI - a slice-based ML software analysis tool that is used for industrial ML software quality analysis.
Onn Shehory is a professor of Intelligent Information Systems at Bar Ilan University (BIU), Israel, where he also serves as the director of the Data Science and AI Institute. He has many years of both academic and industrial experience in the fields of AI and software engineering. In recent years his research focused on ML, its vulnerabilities, and methods for mitigating related risks.
This book is a self-contained introduction to engineering and testing machine learning (ML) systems. It systematically discusses and teaches the art of crafting and developing software systems that include and surround machine learning models. Crafting ML based systems that are business-grade is highly challenging, as it requires statistical control throughout the complete system development life cycle. To this end, the book introduces an “experiment first” approach, stressing the need to define statistical experiments from the beginning of the development life cycle and presenting methods for careful quantification of business requirements and identification of key factors that impact business requirements. Applying these methods reduces the risk of failure of an ML development project and of the resultant, deployed ML system. The presentation is complemented by numerous best practices, case studies and practical as well as theoretical exercises and their solutions, designed to facilitate understanding of the ideas, concepts and methods introduced.
The goal of this book is to empower scientists, engineers, and software developers with the knowledge and skills necessary to create robust and reliable ML software.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condizione: new. Paperback. This book is a self-contained introduction to engineering and testing machine learning (ML) systems. It systematically discusses and teaches the art of crafting and developing software systems that include and surround machine learning models. Crafting ML based systems that are business-grade is highly challenging, as it requires statistical control throughout the complete system development life cycle. To this end, the book introduces an experiment first approach, stressing the need to define statistical experiments from the beginning of the development life cycle and presenting methods for careful quantification of business requirements and identification of key factors that impact business requirements. Applying these methods reduces the risk of failure of an ML development project and of the resultant, deployed ML system. The presentation is complemented by numerous best practices, case studies and practical as well as theoretical exercises and their solutions, designed to facilitate understanding of the ideas, concepts and methods introduced.The goal of this book is to empower scientists, engineers, and software developers with the knowledge and skills necessary to create robust and reliable ML software. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783031700071
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is a self-contained introduction to engineering and testing machine learning (ML) systems. It systematically discusses and teaches the art of crafting and developing software systems that include and surround machine learning models. Crafting ML based systems that are business-grade is highly challenging, as it requires statistical control throughout the complete system development life cycle. To this end, the book introduces an 'experiment first' approach, stressing the need to define statistical experiments from the beginning of the development life cycle and presenting methods for careful quantification of business requirements and identification of key factors that impact business requirements. Applying these methods reduces the risk of failure of an ML development project and of the resultant, deployed ML system. The presentation is complemented by numerous best practices, case studies and practical as well as theoretical exercises and their solutions, designed to facilitate understanding of the ideas, concepts and methods introduced.The goal of this book is to empower scientists, engineers, and software developers with the knowledge and skills necessary to create robust and reliable ML software. 182 pp. Englisch. Codice articolo 9783031700071
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26402090851
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 394319036
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18402090857
Quantità: 4 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Codice articolo 1756047339
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 194 pages. 9.44x6.61x9.45 inches. In Stock. Codice articolo x-3031700074
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -This book is a self-contained introduction to engineering and testing machine learning (ML) systems. It systematically discusses and teaches the art of crafting and developing software systems that include and surround machine learning models. Crafting ML based systems that are business-grade is highly challenging, as it requires statistical control throughout the complete system development life cycle. To this end, the book introduces an ¿experiment first¿ approach, stressing the need to define statistical experiments from the beginning of the development life cycle and presenting methods for careful quantification of business requirements and identification of key factors that impact business requirements. Applying these methods reduces the risk of failure of an ML development project and of the resultant, deployed ML system. The presentation is complemented by numerous best practices, case studies and practical as well as theoretical exercises and their solutions, designed to facilitate understanding of the ideas, concepts and methods introduced.The goal of this book is to empower scientists, engineers, and software developers with the knowledge and skills necessary to create robust and reliable ML software.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 196 pp. Englisch. Codice articolo 9783031700071
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is a self-contained introduction to engineering and testing machine learning (ML) systems. It systematically discusses and teaches the art of crafting and developing software systems that include and surround machine learning models. Crafting ML based systems that are business-grade is highly challenging, as it requires statistical control throughout the complete system development life cycle. To this end, the book introduces an 'experiment first' approach, stressing the need to define statistical experiments from the beginning of the development life cycle and presenting methods for careful quantification of business requirements and identification of key factors that impact business requirements. Applying these methods reduces the risk of failure of an ML development project and of the resultant, deployed ML system. The presentation is complemented by numerous best practices, case studies and practical as well as theoretical exercises and their solutions, designed to facilitate understanding of the ideas, concepts and methods introduced.The goal of this book is to empower scientists, engineers, and software developers with the knowledge and skills necessary to create robust and reliable ML software. Codice articolo 9783031700071
Quantità: 1 disponibili