This book concerns matrix nearness problems in the framework of spectral optimization. It addresses some current research directions in spectral-based stability studies for differential equations, with material on ordinary differential equations (ODEs), differential algebraic equations and dynamical systems. Here, ‘stability’ is interpreted in a broad sense which covers the need to develop stable and reliable algorithms preserving some qualitative properties of the computed solutions, methodologies which are helpful to assess the onset of potential instabilities or loss of robustness, and tools to determine the asymptotic properties of the solution or its discretization.
The topics considered include the computation of robustness measures for linear problems, the use of low-rank ODEs to approximate such measures via gradient systems, the regularity, stability, passivity and controllability analysis of structured linear descriptor systems, and the use of acceleration techniques to deal with some of the presented computational problems.
Although the emphasis is on the numerical study of differential equations and dynamical systems, the book will also be of interest to researchers in matrix theory, spectral optimization and spectral graph theory, as well as in dynamical systems and systems theory.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Nicola Guglielmi has been a full professor in Numerical Analysis at Gran Sasso Science Institute, School of Advanced Studies since 2018 and a visiting professor at the Courant Institute, University of Geneva, University of Zurich, McGill University and Georgia Institute of Technology. His research focuses on numerical methods for delay and functional differential equations, eigenvalue optimization with applications to matrix nearness problems and data science, switched and non smooth dynamical systems, joint spectral characteristics of sets of linear operators, implementation issues for stiff and implicit delay equations, stability properties, stiff problems, and the development of related code. He edited with L. Dieci the volume Current challenges in stability issues for numerical differential equations. CIME Lecture Notes in Mathematics, 2082, Springer, Cham, 2014. With Ernst Hairer he is the co-author of the software RADAR5. He was awarded the New Talent Prize (SciCADE, Fraser Island) in 1999 and a young researcher prize (Volterra Centennial, Tempe) in 1996.
Christian Lubich is a professor of Numerical Mathematics at the University of Tübingen. In his research he develops and analyses numerical methods for time-dependent problems including ordinary differential equations and parabolic partial differential equations, geometric flows, wave propagation and quantum dynamics. Among the methods and techniques proposed and studied by him and his coauthors, convolution quadrature, exponential integrators, modulated Fourier expansions for highly oscillatory problems, and dynamical low-rank approximation have gained wide acceptance. He is the author, with Ernst Hairer and Gerhard Wanner, of "Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations" (Springer 2002, 2006) and of "From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis" (European Mathematical Society 2008). He was awarded the SIAM Dahlquist Prize in 2001 and was a plenary speaker at the International Congress of Mathematicians in 2018.
This book concerns matrix nearness problems in the framework of spectral optimization. It addresses some current research directions in spectral-based stability studies for differential equations, with material on ordinary differential equations (ODEs), differential algebraic equations and dynamical systems. Here, ‘stability’ is interpreted in a broad sense which covers the need to develop stable and reliable algorithms preserving some qualitative properties of the computed solutions, methodologies which are helpful to assess the onset of potential instabilities or loss of robustness, and tools to determine the asymptotic properties of the solution or its discretization.
The topics considered include the computation of robustness measures for linear problems, the use of low-rank ODEs to approximate such measures via gradient systems, the regularity, stability, passivity and controllability analysis of structured linear descriptor systems, and the use of acceleration techniques to deal with some of the presented computational problems.
Although the emphasis is on the numerical study of differential equations and dynamical systems, the book will also be of interest to researchers in matrix theory, spectral optimization and spectral graph theory, as well as in dynamical systems and systems theory.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 13,90 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Studibuch, Stuttgart, Germania
paperback. Condizione: Befriedigend. 188 Seiten; 9783031713255.4 Gewicht in Gramm: 500. Codice articolo 941359
Quantità: 1 disponibili
Da: Books From California, Simi Valley, CA, U.S.A.
paperback. Condizione: Very Good. Codice articolo mon0003839316
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Codice articolo 1780999018
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 200 pages. 9.25x6.10x9.21 inches. In Stock. This item is printed on demand. Codice articolo __3031713257
Quantità: 1 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo S0-9783031713255
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book concerns matrix nearness problems in the framework of spectral optimization. It addresses some current research directions in spectral-based stability studies for differential equations, with material on ordinary differential equations (ODEs), differential algebraic equations and dynamical systems. Here, 'stability' is interpreted in a broad sense which covers the need to develop stable and reliable algorithms preserving some qualitative properties of the computed solutions, methodologies which are helpful to assess the onset of potential instabilities or loss of robustness, and tools to determine the asymptotic properties of the solution or its discretization.The topics considered include the computation of robustness measures for linear problems, the use of low-rank ODEs to approximate such measures via gradient systems, the regularity, stability, passivity and controllability analysis of structured linear descriptor systems, and the use of acceleration techniques to deal with some of the presented computational problems.Although the emphasis is on the numerical study of differential equations and dynamical systems, the book will also be of interest to researchers in matrix theory, spectral optimization and spectral graph theory, as well as in dynamical systems and systems theory. 176 pp. Englisch. Codice articolo 9783031713255
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783031713255_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book concerns matrix nearness problems in the framework of spectral optimization. It addresses some current research directions in spectral-based stability studies for differential equations, with material on ordinary differential equations (ODEs), differential algebraic equations and dynamical systems. Here, 'stability' is interpreted in a broad sense which covers the need to develop stable and reliable algorithms preserving some qualitative properties of the computed solutions, methodologies which are helpful to assess the onset of potential instabilities or loss of robustness, and tools to determine the asymptotic properties of the solution or its discretization.The topics considered include the computation of robustness measures for linear problems, the use of low-rank ODEs to approximate such measures via gradient systems, the regularity, stability, passivity and controllability analysis of structured linear descriptor systems, and the use of acceleration techniques to deal with some of the presented computational problems.Although the emphasis is on the numerical study of differential equations and dynamical systems, the book will also be of interest to researchers in matrix theory, spectral optimization and spectral graph theory, as well as in dynamical systems and systems theory. Codice articolo 9783031713255
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -This book concerns matrix nearness problems in the framework of spectral optimization. It addresses some current research directions in spectral-based stability studies for differential equations, with material on ordinary differential equations (ODEs), differential algebraic equations and dynamical systems. Here, 'stability' is interpreted in a broad sense which covers the need to develop stable and reliable algorithms preserving some qualitative properties of the computed solutions, methodologies which are helpful to assess the onset of potential instabilities or loss of robustness, and tools to determine the asymptotic properties of the solution or its discretization.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 188 pp. Englisch. Codice articolo 9783031713255
Quantità: 2 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783031713255
Quantità: Più di 20 disponibili