Algebraic Geometry is a huge area of mathematics which went through several phases: Hilbert's fundamental paper from 1890, sheaves and cohomology introduced by Serre in the 1950s, Grothendieck's theory of schemes in the 1960s and so on. This book covers the basic material known before Serre's introduction of sheaves to the subject with an emphasis on computational methods. In particular, we will use Gröbner basis systematically.
The highlights are the Nullstellensatz, Gröbner basis, Hilbert's syzygy theorem and the Hilbert function, Bézout’s theorem, semi-continuity of the fiber dimension, Bertini's theorem, Cremona resolution of plane curves and parametrization of rational curves.
In the final chapter we discuss the proof of the Riemann-Roch theorem due to Brill and Noether, and give its basic applications.The algorithm to compute the Riemann-Roch space of a divisor on a curve, which has a plane model with only ordinary singularities, use adjoint systems. The proof of the completeness of adjoint systems becomes much more transparent if one use cohomology of coherent sheaves. Instead of giving the original proof of Max Noether, we explain in an appendix how this easily follows from standard facts on cohomology of coherent sheaves.
The book aims at undergraduate students. It could be a course book for a first Algebraic Geometry lecture, and hopefully motivates further studies.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Frank-Olaf Schreyer is a German mathematician, specializing in algebraic geometry and algorithmic algebraic geometry.
Schreyer received in 1983 his PhD from Brandeis University with thesis Syzygies of Curves with Special Pencils under the supervision of David Eisenbud. Schreyer was a professor at University of Bayreuth and is since 2002 a professor for mathematics and computer sciences at Saarland University. He has been a visiting professor at the Simons Laufer Mathematical Sciences Institute at Berkeley and at KAIST in South Korea.
He is involved in the development of (algorithmic) algebraic geometry, and is well-known for his contributions to the theory of syzygies.
Algebraic Geometry is a huge area of mathematics which went through several phases: Hilbert's fundamental paper from 1890, sheaves and cohomology introduced by Serre in the 1950s, Grothendieck's theory of schemes in the 1960s and so on. This book covers the basic material known before Serre's introduction of sheaves to the subject with an emphasis on computational methods. In particular, we will use Gröbner basis systematically.
The highlights are the Nullstellensatz, Gröbner basis, Hilbert's syzygy theorem and the Hilbert function, Bézout’s theorem, semi-continuity of the fiber dimension, Bertini's theorem, Cremona resolution of plane curves and parametrization of rational curves.
In the final chapter we discuss the proof of the Riemann-Roch theorem due to Brill and Noether, and give its basic applications.The algorithm to compute the Riemann-Roch space of a divisor on a curve, which has a plane model with only ordinary singularities, use adjoint systems. The proof of the completeness of adjoint systems becomes much more transparent if one use cohomology of coherent sheaves. Instead of giving the original proof of Max Noether, we explain in an appendix how this easily follows from standard facts on cohomology of coherent sheaves.
The book aims at undergraduate students. It could be a course book for a first Algebraic Geometry lecture, and hopefully motivates further studies.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26403685130
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 410517717
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 49905618-n
Quantità: 3 disponibili
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-330707
Quantità: 1 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEOCT25-18653
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18403685120
Quantità: 1 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783031848339
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. Algebraic Geometry is a huge area of mathematics which went through several phases: Hilbert's fundamental paper from 1890, sheaves and cohomology introduced by Serre in the 1950s, Grothendieck's theory of schemes in the 1960s and so on. This book covers the basic material known before Serre's introduction of sheaves to the subject with an emphasis on computational methods. In particular, we will use Groebner basis systematically.The highlights are the Nullstellensatz, Groebner basis, Hilbert's syzygy theorem and the Hilbert function, Bezouts theorem, semi-continuity of the fiber dimension, Bertini's theorem, Cremona resolution of plane curves and parametrization of rational curves.In the final chapter we discuss the proof of the Riemann-Roch theorem due to Brill and Noether, and give its basic applications.The algorithm to compute the Riemann-Roch space of a divisor on a curve, which has a plane model with only ordinary singularities, use adjoint systems. The proof of the completeness of adjoint systems becomes much more transparent if one use cohomology of coherent sheaves. Instead of giving the original proof of Max Noether, we explain in an appendix how this easily follows from standard facts on cohomology of coherent sheaves. The book aims at undergraduate students. It could be a course book for a first Algebraic Geometry lecture, and hopefully motivates further studies. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783031848339
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 49905618
Quantità: 3 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783031848339_new
Quantità: Più di 20 disponibili