V ? V ?K? , 3 2 2 R ? /?x K i i g V T G g ?T , ? G g g 4 ? R ? ? G ? T g g ? h h ? 2 2 2 2 ? ? ? ? ? ? ? h ?S , ?? ?? 2 2 2 2 2 c ?t ?x ?x ?x 1 2 3 S T S T? T?. ? ˜ T S 2 2 2 2 ? ? ? ? ? ? ? h . ?? 2 2 2 2 2 c ?t ?x ?x ?x 1 2 3 g h h ?? g T T g vacuum M n R n R Acknowledgements n R Chapter I Pseudo-Riemannian Manifolds I.1 Connections M C n X M C M F M C X M F M connection covariant derivative M ? X M ×X M ?? X M X,Y ?? Y X ? Y ? Y ? Y X +X X X 1 2 1 2 ? Y Y ? Y ? Y X 1 2 X 1 X 2 ? Y f? Y f?F M fX X ? fY X f Y f? Y f?F M X X ? torsion ? Y?? X X,Y X,Y?X M . X Y localization principle Theorem I.1. Let X, Y, X , Y be C vector ?elds on M.Let U be an open set
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
From the reviews:
“The authors of the book under review have contributed to this subject over the last ten years by studying the linearization stability for Einstein’s equations with source terms and in cosmological solutions. Here they present the results in a systematic fashion accessible to a reader with some background in differential geometry and partial differential equations.” (Hans-Peter Künzle, Mathematical Reviews, Issue 2011 h)Preface // I Pseudo-Riemannian Manifolds: I.1 Connections / I.2 Firsts results on pseudo-Riemannian manifolds / I.3 Laplacians / I.4 Sobolev spaces of tensors on Riemannian manifolds / I.5 Lorentzian manifolds // II Introduction to Relativity: II.1 Classical fluid mechanics / II.2 Kinematics of the special relativity / II.3 Dynamics of special relativity / II.4 General relativity / II.5 Cosmological models / II. 6 Appendix: a theorem in affine geometry // III. Approximation of Einstein's Equation by the Wave Equation: III.1 Perturbations of Ricci tensor / III.2 Einstein's equation for small perturbations of the Minkowski metric / III.3 Action on metrics of diffeomorphisms close to identity / III.4 Continuing the calculation of Section 2 / III.5 Comparison with the classical gravitation // IV. Cauchy Problem for Einstein's Equation with Matter: IV.1 1. Differential operators in an open set of Rn+1 / IV.2 Differential operators in vector bundles / IV.3 Harmonic maps / IV.4 Admissible classes of stress-energy tensors / IV.5 Differential operator associated to Einstein's equation / IV.6 Constraint equations / IV.7 Hyperbolic reduction / IV.8 Fundamental theorem / IV.9 An example: the stress-energy tensor of holonomic media / IV.10 The Cauchy problem in the vacuum // V. Stability by Linearization of Einstein's Equation, General Concepts: V.1 Classical concept of stability by linearization of Einstein's equation in the vacuum / V.2 A new concept of stability by linearization of Einstein's equation in the presence of matter / V.3 How to apply the definition of stability by linearization of Einstein's equation in the presence of matter / V.4 Change of notation / V.5 Technical details concerning the map f / V.6 Tangent linear map of f // VI. General Results on Stability by Linearization when the Submanifold M of V is Compact: IV.1 1. Adjoint of D(g,k) f / VI.2 Results by A. Fischer and J. E. Marsden / VI.3 A result by V. Moncrief / VI.4 Appendix: general results on elliptic operators in compact manifolds // VII. Stability by Linearization of Einstein's Equation at Minkowski's Initial Metric: VII.1 A further expression of D(g,k) f / VII.2 The relation between Euclidean Laplacian and stability by linearization at the initial Minkowski's metric / VII.3 Some proofs on topological isomorphisms in Rn / VII.4 Stability of the Minkowski metric: Y. Choquet-Bruhat and S. Deser's result / VII.5 The Euclidean asymptotic case: generalization of a result by Y. Choquet-Bruhat, A. Fischer and J. E. Marsden // VIII. Stability by Linearization of Einstein's Equation in Robertson-Walker Cosmological Models: VIII.1 Euclidean model / VIII.2 Hyperbolic model / VIII.3 Sobolev spaces and hyperbolic Laplacian / VIII.4 Spherical model / VIII.5 Universes that are not simply connected // References
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione da Germania a Italia
Destinazione, tempi e costiGRATIS per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-261705
Quantità: 1 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut | Seiten: 228 | Sprache: Englisch | Produktart: Bücher. Codice articolo 5925037/12
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Contains classical results on stability of great beauty Presents the objects needed to prove the theorems and the Cauchy problem for Einstein s equation in a self-contained wayProvides introductory chapters on pseudo-Riemannian manifolds and relativity (bot. Codice articolo 4317917
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -V V K , 3 2 2 R / x K i i g V T G g T , G g g 4 R G T g g h h 2 2 2 2 h S , 2 2 2 2 2 c t x x x 1 2 3 S T S T T . T S 2 2 2 2 h . 2 2 2 2 2 c t x x x 1 2 3 g h h g T T g vacuum M n R n R Acknowledgements n R Chapter I Pseudo-Riemannian Manifolds I.1 Connections M C n X M C M F M C X M F M connection covariant derivative M X M ×X M X M X,Y Y X Y Y Y X +X X X 1 2 1 2 Y Y Y Y X 1 2 X 1 X 2 Y f Y f F M fX X fY X f Y f Y f F M X X torsion Y X X,Y X,Y X M . X Y localization principle Theorem I.1. Let X, Y, X , Y be C vector elds on M.Let U be an open set 228 pp. Englisch. Codice articolo 9783034603034
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - V V K , 3 2 2 R / x K i i g V T G g T , G g g 4 R G T g g h h 2 2 2 2 h S , 2 2 2 2 2 c t x x x 1 2 3 S T S T T . T S 2 2 2 2 h . 2 2 2 2 2 c t x x x 1 2 3 g h h g T T g vacuum M n R n R Acknowledgements n R Chapter I Pseudo-Riemannian Manifolds I.1 Connections M C n X M C M F M C X M F M connection covariant derivative M X M ×X M X M X,Y Y X Y Y Y X +X X X 1 2 1 2 Y Y Y Y X 1 2 X 1 X 2 Y f Y f F M fX X fY X f Y f Y f F M X X torsion Y X X,Y X,Y X M . X Y localization principle Theorem I.1. Let X, Y, X , Y be C vector elds on M.Let U be an open set. Codice articolo 9783034603034
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -V V K , 3 2 2 R / x K i i g V T G g T , G g g 4 R G T g g h h 2 2 2 2 h S , 2 2 2 2 2 c t x x x 1 2 3 S T S T T . ¿ T S 2 2 2 2 h . 2 2 2 2 2 c t x x x 1 2 3 g h h g T T g vacuum M n R n R Acknowledgements n R Chapter I Pseudo-Riemannian Manifolds I.1 Connections M C n X M C M F M C X M F M connection covariant derivative M X M ×X M X M X,Y Y X Y Y Y X +X X X 1 2 1 2 Y Y Y Y X 1 2 X 1 X 2 Y f Y f F M fX X fY X f Y f Y f F M X X torsion Y X X,Y X,Y X M . X Y localization principle Theorem I.1. Let X, Y, X , Y be C vector elds on M.Let U be an open setSpringer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 228 pp. Englisch. Codice articolo 9783034603034
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783034603034_new
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. xv + 208. Codice articolo 261368156
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. xv + 208. Codice articolo 6512515
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 1st edition. 208 pages. 9.50x6.50x0.75 inches. In Stock. Codice articolo x-3034603037
Quantità: 2 disponibili