In the last ?fteen years two seemingly unrelated problems, one in computer science and the other in measure theory, were solved by amazingly similar techniques from representation theory and from analytic number theory. One problem is the - plicit construction of expanding graphs («expanders»). These are highly connected sparse graphs whose existence can be easily demonstrated but whose explicit c- struction turns out to be a dif?cult task. Since expanders serve as basic building blocks for various distributed networks, an explicit construction is highly des- able. The other problem is one posed by Ruziewicz about seventy years ago and studied by Banach [Ba]. It asks whether the Lebesgue measure is the only ?nitely additive measure of total measure one, de?ned on the Lebesgue subsets of the n-dimensional sphere and invariant under all rotations. The two problems seem, at ?rst glance, totally unrelated. It is therefore so- what surprising that both problems were solved using similar methods: initially, Kazhdan’s property (T) from representation theory of semi-simple Lie groups was applied in both cases to achieve partial results, and later on, both problems were solved using the (proved) Ramanujan conjecture from the theory of automorphic forms. The fact that representation theory and automorphic forms have anything to do with these problems is a surprise and a hint as well that the two questions are strongly related.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
From reviews:
"This exciting book marks the genesis of a new field. It is a field in which one passes back and forth at will through the looking glass dividing the discrete from the continuous. (...) The book is a charming combination of topics from group theory (finite and infinite), combinatorics, number theory, harmonic analysis." - Zentralblatt MATH
"The Appendix, written by J. Rogawski, explains the Jacquet-Langlands theory and indicates Deligne’s proof of the Petersson-Ramanujan conjecture. It would merit its own review. (...) In conclusion, this is a wonderful way of transmitting recent mathematical research directly "from the producer to the consumer". - MathSciNet
"The book is accessible to mature graduate students in mathematics and theoretical computer science. It is a nice presentation of a gem at the border of analysis, geometry, algebra and combinatorics. Those who take the effort to glance what happens behind the scene won’t regret it." - Acta Scientiarum Mathematicarum
Expanding Graphs.- The Banach-Ruziewicz Problem.- Kazhdan Property (T) and its Applications.- The Laplacian and its Eigenvalues.- The Representation Theory of PGL 2.- Spectral Decomposition of L 2(G(?)\G(A)).- Banach-Ruziewicz Problem for n = 2, 3; Ramanujan Graphs.- Some More Discrete Mathematics.- Distributing Points on the Sphere.- Open Problems.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,54 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Award-winning monograph of the Ferran Sunyer i Balaguer Prize 1993Exciting tour through several areas of mathematicsRecent mathematical researchAward-winning monograph of the Ferran Sunyer i Balaguer Prize 1993Exciting tou. Codice articolo 4317923
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783034603317_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the last fteen years two seemingly unrelated problems, one in computer science and the other in measure theory, were solved by amazingly similar techniques from representation theory and from analytic number theory. One problem is the - plicit construction of expanding graphs ('expanders'). These are highly connected sparse graphs whose existence can be easily demonstrated but whose explicit c- struction turns out to be a dif cult task. Since expanders serve as basic building blocks for various distributed networks, an explicit construction is highly des- able. The other problem is one posed by Ruziewicz about seventy years ago and studied by Banach [Ba]. It asks whether the Lebesgue measure is the only nitely additive measure of total measure one, de ned on the Lebesgue subsets of the n-dimensional sphere and invariant under all rotations. The two problems seem, at rst glance, totally unrelated. It is therefore so- what surprising that both problems were solved using similar methods: initially, Kazhdan's property (T) from representation theory of semi-simple Lie groups was applied in both cases to achieve partial results, and later on, both problems were solved using the (proved) Ramanujan conjecture from the theory of automorphic forms. The fact that representation theory and automorphic forms have anything to do with these problems is a surprise and a hint as well that the two questions are strongly related. 196 pp. Englisch. Codice articolo 9783034603317
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 7629513-n
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9783034603317
Quantità: 10 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - In the last fteen years two seemingly unrelated problems, one in computer science and the other in measure theory, were solved by amazingly similar techniques from representation theory and from analytic number theory. One problem is the - plicit construction of expanding graphs ('expanders'). These are highly connected sparse graphs whose existence can be easily demonstrated but whose explicit c- struction turns out to be a dif cult task. Since expanders serve as basic building blocks for various distributed networks, an explicit construction is highly des- able. The other problem is one posed by Ruziewicz about seventy years ago and studied by Banach [Ba]. It asks whether the Lebesgue measure is the only nitely additive measure of total measure one, de ned on the Lebesgue subsets of the n-dimensional sphere and invariant under all rotations. The two problems seem, at rst glance, totally unrelated. It is therefore so- what surprising that both problems were solved using similar methods: initially, Kazhdan's property (T) from representation theory of semi-simple Lie groups was applied in both cases to achieve partial results, and later on, both problems were solved using the (proved) Ramanujan conjecture from the theory of automorphic forms. The fact that representation theory and automorphic forms have anything to do with these problems is a surprise and a hint as well that the two questions are strongly related. Codice articolo 9783034603317
Quantità: 2 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 7629513-n
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 206. Codice articolo 261368101
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 206 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 6512634
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 206. Codice articolo 181368111
Quantità: 4 disponibili