The book demonstrates the development of integral geometry on domains of homogeneous spaces since 1990. It covers a wide range of topics, including analysis on multidimensional Euclidean domains and Riemannian symmetric spaces of arbitrary ranks as well as recent work on phase space and the Heisenberg group. The book includes many significant recent results, some of them hitherto unpublished, among which can be pointed out uniqueness theorems for various classes of functions, far-reaching generalizations of the two-radii problem, the modern versions of the Pompeiu problem, and explicit reconstruction formulae in problems of integral geometry. These results are intriguing and useful in various fields of contemporary mathematics. The proofs given are minimal in the sense that they involve only those concepts and facts which are indispensable for the essence of the subject. Each chapter provides a historical perspective on the results presented and includes many interesting open problems. Readers will find this book relevant to harmonic analysis on homogeneous spaces, invariant spaces theory, integral transforms on symmetric spaces and the Heisenberg group, integral equations, special functions, and transmutation operators theory.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
The book demonstrates the development of integral geometry on domains of homogeneous spaces since 1990. It covers a wide range of topics, including analysis on multidimensional Euclidean domains and Riemannian symmetric spaces of arbitrary ranks as well as recent work on phase space and the Heisenberg group. The book includes many significant recent results, some of them hitherto unpublished, among which can be pointed out uniqueness theorems for various classes of functions, far-reaching generalizations of the two-radii problem, the modern versions of the Pompeiu problem, and explicit reconstruction formulae in problems of integral geometry. These results are intriguing and useful in various fields of contemporary mathematics. The proofs given are minimal in the sense that they involve only those concepts and facts which are indispensable for the essence of the subject.
Each chapter provides a historical perspective on the results presented and includes many interesting open problems. Readers will find this book relevant to harmonic analysis on homogeneous spaces, invariant spaces theory, integral transforms on symmetric spaces and the Heisenberg group, integral equations, special functions, and transmutation operators theory.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,92 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiEUR 8,00 per la spedizione da Italia a U.S.A.
Destinazione, tempi e costiDa: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Questo è un articolo print on demand. Codice articolo e336a628ad39d46c13e433057062cf33
Quantità: Più di 20 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783034805711
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020037789
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The book demonstrates the development of integral geometry on domains of homogeneous spaces since 1990. It covers a wide range of topics, including analysis on multidimensional Euclidean domains and Riemannian symmetric spaces of arbitrary ranks as well as recent work on phase space and the Heisenberg group. The book includes many significant recent results, some of them hitherto unpublished, among which can be pointed out uniqueness theorems for various classes of functions, far-reaching generalizations of the two-radii problem, the modern versions of the Pompeiu problem, and explicit reconstruction formulae in problems of integral geometry. These results are intriguing and useful in various fields of contemporary mathematics. The proofs given are 'minimal' in the sense that they involve only those concepts and facts which are indispensable for the essence of the subject. Each chapter provides a historical perspective on the results presented and includes many interesting open problems. Readers will find this book relevant to harmonic analysis on homogeneous spaces, invariant spaces theory, integral transforms on symmetric spaces and the Heisenberg group, integral equations, special functions, and transmutation operators theory. 604 pp. Englisch. Codice articolo 9783034805711
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783034805711_new
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Codice articolo 4318285
Quantità: Più di 20 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Hardcover. Condizione: Like New. Like New. book. Codice articolo ERICA77330348057136
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 604. Codice articolo 2658579840
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 604. Codice articolo 51012703
Quantità: 4 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -The book demonstrates the development of integral geometry on domains of homogeneous spaces since 1990. It covers a wide range of topics, including analysis on multidimensional Euclidean domains and Riemannian symmetric spaces of arbitrary ranks as well as recent work on phase space and the Heisenberg group. The book includes many significant recent results, some of them hitherto unpublished, among which can be pointed out uniqueness theorems for various classes of functions, far-reaching generalizations of the two-radii problem, the modern versions of the Pompeiu problem, and explicit reconstruction formulae in problems of integral geometry. These results are intriguing and useful in various fields of contemporary mathematics. The proofs given are ¿minimal¿ in the sense that they involve only those concepts and facts which are indispensable for the essence of the subject. Each chapter provides a historical perspective on the results presented and includes many interesting open problems. Readers will find this book relevant to harmonic analysis on homogeneous spaces, invariant spaces theory, integral transforms on symmetric spaces and the Heisenberg group, integral equations, special functions, and transmutation operators theory.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 604 pp. Englisch. Codice articolo 9783034805711
Quantità: 2 disponibili