This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
"It should be stressed that an important part of the results presented is due to the authors. . . . In the reviewer's opinion, this is an elegant and most welcome addition to the rich literature of Markov processes."
--MathSciNet
1 Preliminaries.- 1.1 Introduction.- 1.2 Measures and Functions.- 1.3 Weak Topologies.- 1.4 Convergence of Measures.- 1.5 Complements.- 1.6 Notes.- I Markov Chains and Ergodicity.- 2 Markov Chains and Ergodic Theorems.- 2.1 Introduction.- 2.2 Basic Notation and Definitions.- 2.3 Ergodic Theorems.- 2.4 The Ergodicity Property.- 2.5 Pathwise Results.- 2.6 Notes.- 3 Countable Markov Chains.- 3.1 Introduction.- 3.2 Classification of States and Class Properties.- 3.3 Limit Theorems.- 3.4 Notes.- 4 Harris Markov Chains.- 4.1 Introduction.- 4.2 Basic Definitions and Properties.- 4.3 Characterization of Harris recurrence.- 4.4 Sufficient Conditions for P.H.R.- 4.5 Harris and Doeblin Decompositions.- 4.6 Notes.- 5 Markov Chains in Metric Spaces.- 5.1 Introduction.- 5.2 The Limit in Ergodic Theorems.- 5.3 Yosida’s Ergodic Decomposition.- 5.4 Pathwise Results.- 5.5 Proofs.- 5.6 Notes.- 6 Classification of Markov Chains via Occupation Measures.- 6.1 Introduction.- 6.2 A Classification.- 6.3 On the Birkhoff Individual Ergodic Theorem.- 6.4 Notes.- II Further Ergodicity Properties.- 7 Feller Markov Chains.- 7.1 Introduction.- 7.2 Weak-and Strong-Feller Markov Chains.- 7.3 Quasi Feller Chains.- 7.4 Notes.- 8 The Poisson Equation.- 8.1 Introduction.- 8.2 The Poisson Equation.- 8.3 Canonical Pairs.- 8.4 The Cesàro-Averages Approach.- 8.5 The Abelian Approach.- 8.6 Notes.- 9 Strong and Uniform Ergodicity.- 9.1 Introduction.- 9.2 Strong and Uniform Ergodicity.- 9.3 Weak and Weak Uniform Ergodicity.- 9.4 Notes.- III Existence and Approximation of Invariant Probability Measures.- 10 Existence of Invariant Probability Measures.- 10.1 Introduction and Statement of the Problems.- 10.2 Notation and Definitions.- 10.3 Existence Results.- 10.4 Markov Chains in Locally Compact Separable Metric Spaces.- 10.5 Other Existence Results in Locally Compact Separable Metric Spaces.- 10.6 Technical Preliminaries.- 10.7 Proofs.- 10.8 Notes.- 11 Existence and Uniqueness of Fixed Points for Markov Operators.- 11.1 Introduction and Statement of the Problems.- 11.2 Notation and Definitions.- 11.3 Existence Results.- 11.4 Proofs.- 11.5 Notes.- 12 Approximation Procedures for Invariant Probability Measures.- 12.1 Introduction.- 12.2 Statement of the Problem and Preliminaries.- 12.3 An Approximation Scheme.- 12.4 A Moment Approach for a Special Class of Markov Chains.- 12.5 Notes.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,56 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiEUR 3,55 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020038687
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783034894081_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, . } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, . The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (\*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (\*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P). Codice articolo 9783034894081
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 228 pages. 9.25x6.10x0.52 inches. In Stock. Codice articolo x-3034894082
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Some of the results presented appear for the first time in book formEmphasis on the role of expected occupation measures to study the long-run behavior of Markov chains on uncountable spacesThis book is about discrete-time, time-homoge. Codice articolo 4319225
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9783034894081
Quantità: 10 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, . } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, . The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (\*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (\*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P). 208 pp. Englisch. Codice articolo 9783034894081
Quantità: 2 disponibili
Da: dsmbooks, Liverpool, Regno Unito
Paperback. Condizione: Like New. Like New. book. Codice articolo D8F0-0-M-3034894082-6
Quantità: 1 disponibili