O I 1 -1 durch die GauB-Quadraturformel Q I n n L w 0 f (x 0) · i=1 1 1 Sei Rn : = I - Q das Fehlerfunktional. n Izl1, Fur eine im Kreis Kr I Kr : = {z E a: holomorphe Funktion f, f(z) = L i=O sei f i i · = x . ( 1. 1) : = sup{ I a 0 I r i E:JN und R (qo) * O}, qo (x) o 1 n 1 1 In Xr := {f: f holomorph in Kr und Iflr < oo} ist I . I eine Seminorm. Das Fehlerfunktional Rn ist in r (X I· I r) stetig I und fUr II Rn II I r, gilt die Identitat 00 (1 . 2) L i=O Dieser Zugang zu ableitungsfreien Abschatzungen des Fehlerterms (1 · 3) geht auf Hammerlin [4] zurUck. 15 Erftillt die Gewichtsfunktion w eine der Bedingungen w (t ) w(t ) 1 2 ;;; (1. 4. a) w (-t ) w (-t ) 1 2 beziehungsweise w (t ) w(t ) 1 2 (1. 4. b) ~ w (-t ) w (-t ) 1 2 so gilt mit P (x) (X-X ) ·. · (X-X ) ftir die Fehlernorm 1 n n r 1 Pn(x) (1. 5. a) --,-. . - J w (x) dx Pn(r) -1 r-x beziehungsweise r 1 P (x) (1. 5. b) ( ) J w(x) ~ dx .
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Die Fehlernorm spezieller Gauss-Quadraturformeln.- Solving integral equations on surfaces in space.- An adaptive step size control for Volterra integral equations.- Concerning A(?)-stable mixed Volterra Runge-Kutta methods.- Constrained approximation techniques for solving integral equations.- On the numerical solution by collocation of Volterra integrodifferential equations with nonsmooth solutions.- Inclusion of regular and singular solutions of certain types of integral equations.- Two methods for solving the inverse scattering problem for time-harmonic acoustic waves.- Beyond superconvergence of collocation methods for Volterra integral equations of the first kind.- Optimal discrepancy principles for the Tikhonov regularization of integral equations of the first kind.- Spline-Galerkin method for solving some quantum mechanic integral equations.- Integral treatment of O.D.E with splines.- Product integration for weakly singular integral equations in ?m.- Stability results for discrete Volterra equations: Numerical experiments.- The design of acoustic torpedos.- On the condition number of boundary integral equations in acoustic scattering using combined double- and single-layer potentials.- Numerical solution of singular integral equations and an application to the theory of jet-flapped wings.- Tikhonov-Phillips regularization of the Radon Transform.- Numerical solution of a first kind Fredholm integral equation arising in electron-atom scattering.- Approximate solution of ill-posed equations: Arbitrarily slow convergence vs. superconvergence.- A unified analysis of discretization methods for Volterra-type equations.- Wiener-Hopf integral equations: Finite section approximation and projection methods..- Stability results for Abel equation.- Problems.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 3,52 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020039148
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783034899932_new
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9783034899932
Quantità: 10 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - O I 1 -1 durch die GauB-Quadraturformel Q I n n L w 0 f (x 0) i=1 1 1 Sei Rn : = I - Q das Fehlerfunktional. n Izl1, Fur eine im Kreis Kr I Kr : = {z E a: holomorphe Funktion f, f(z) = L i=O sei f i i = x . ( 1. 1) : = sup{ I a 0 I r i E:JN und R (qo) O}, qo (x) o 1 n 1 1 In Xr := {f: f holomorph in Kr und Iflr oo} ist I . I eine Seminorm. Das Fehlerfunktional Rn ist in r (X I I r) stetig I und fUr II Rn II I r, gilt die Identitat 00 (1 . 2) L i=O Dieser Zugang zu ableitungsfreien Abschatzungen des Fehlerterms (1 3) geht auf Hammerlin [4] zurUck. 15 Erftillt die Gewichtsfunktion w eine der Bedingungen w (t ) w(t ) 1 2 ;;; (1. 4. a) w (-t ) w (-t ) 1 2 beziehungsweise w (t ) w(t ) 1 2 (1. 4. b) ~ w (-t ) w (-t ) 1 2 so gilt mit P (x) (X-X ) . (X-X ) ftir die Fehlernorm 1 n n r 1 Pn(x) (1. 5. a) --,-. . - J w (x) dx Pn(r) -1 r-x beziehungsweise r 1 P (x) (1. 5. b) ( ) J w(x) ~ dx . Codice articolo 9783034899932
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 288 pages. 10.00x7.00x0.65 inches. In Stock. Codice articolo x-3034899939
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Die Fehlernorm spezieller Gauss-Quadraturformeln.- Solving integral equations on surfaces in space.- An adaptive step size control for Volterra integral equations.- Concerning A(?)-stable mixed Volterra Runge-Kutta methods.- Constrained approximation techni. Codice articolo 4319787
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -O I 1 -1 durch die GauB-Quadraturformel Q I n n L w 0 f (x 0) i=1 1 1 Sei Rn : = I - Q das Fehlerfunktional. n Izl1, Fur eine im Kreis Kr I Kr : = {z E a: holomorphe Funktion f, f(z) = L i=O sei f i i = x . ( 1. 1) : = sup{ I a 0 I r i E:JN und R (qo) O}, qo (x) o 1 n 1 1 In Xr := {f: f holomorph in Kr und Iflr oo} ist I . I eine Seminorm. Das Fehlerfunktional Rn ist in r (X I I r) stetig I und fUr II Rn II I r, gilt die Identitat 00 (1 . 2) L i=O Dieser Zugang zu ableitungsfreien Abschatzungen des Fehlerterms (1 3) geht auf Hammerlin [4] zurUck. 15 Erftillt die Gewichtsfunktion w eine der Bedingungen w (t ) w(t ) 1 2 ;;; (1. 4. a) w (-t ) w (-t ) 1 2 beziehungsweise w (t ) w(t ) 1 2 (1. 4. b) ~ w (-t ) w (-t ) 1 2 so gilt mit P (x) (X-X ) . (X-X ) ftir die Fehlernorm 1 n n r 1 Pn(x) (1. 5. a) --,-. . - J w (x) dx Pn(r) -1 r-x beziehungsweise r 1 P (x) (1. 5. b) ( ) J w(x) ~ dx . 284 pp. Englisch. Codice articolo 9783034899932
Quantità: 2 disponibili